Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-29T14:28:49.182Z Has data issue: false hasContentIssue false

Comparison Study for TiN Films Deposited from Different Method: Chemical Vapor Deposition and Atomic Layer Deposition

Published online by Cambridge University Press:  21 March 2011

Byoung-Youp Kim
Affiliation:
ALD Team, CVD Div., Jusung Engineering Co. Ltd. #49 Neungpyeong-Ri, Opo-Myeun, Kwangju-Si, Kyunggi-Do
Seung-Hyun Lee
Affiliation:
ALD Team, CVD Div., Jusung Engineering Co. Ltd. #49 Neungpyeong-Ri, Opo-Myeun, Kwangju-Si, Kyunggi-Do
Sang-Gee Park
Affiliation:
ALD Team, CVD Div., Jusung Engineering Co. Ltd. #49 Neungpyeong-Ri, Opo-Myeun, Kwangju-Si, Kyunggi-Do
Ki-Young Oh
Affiliation:
ALD Team, CVD Div., Jusung Engineering Co. Ltd. #49 Neungpyeong-Ri, Opo-Myeun, Kwangju-Si, Kyunggi-Do
Juho Song
Affiliation:
ALD Team, CVD Div., Jusung Engineering Co. Ltd. #49 Neungpyeong-Ri, Opo-Myeun, Kwangju-Si, Kyunggi-Do
Do-Heyoung Kim
Affiliation:
Faculty of Applied Chemistry, College of Engineering, Chonnam National University300 Yongbong-dong, Buk-Ku, KwangJu 500-757, Korea
Get access

Abstract

This paper compared two different film deposition processes for formation of TiN barrier layers, conventional TiCl4-based chemical vapor deposition and atomic layer deposition (ALD). The 30nm thick TiN film deposited by conventional TiCl4-based CVD at the process temperature of 600°C followed by NH3 post-deposition anneal showed about 180 μΩcm of resistivity, over 95 % of step coverage for the pattern aspect ratio of 6 on 0.35 μm contact diameters, and below 2 at.% of chlorine contents in the film. Meanwhile, the films deposited by ALD at 100°C lower process temperature than CVD showed much better film properties even without post-deposition anneal. It showed lower resistivity values and lower chlorine incorporation along with better step coverage characteristics. More detailed material analysis was done by AFM, SEM, and AES.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Price, J. E. Borland, J. O. and Selbrede, S., Thin Solid Films 236 (1993) 311318 Google Scholar
[2] Homoyoun, Talieh, Avi, Tepman, Thi, Kieu Hoa and Chien-Rhone, Wang, US Patent 5171412Google Scholar
[3] Liubo, Hong, Hougong, Wang, Gongda, Yao and Zheng, Xu, US Patent 6077402Google Scholar
[4] Travis, E. O. and Fiordalice, R. W., Thin Solid Films, 236(1993) 325329 Google Scholar
[5] Hillman, J. T. and Studiner, D. W., VMIC Conf. Proc. 1992, 295297 Google Scholar
[6] Dekker, J. P., Put, P.J. van der, Veringa, H.J and Schoonman, J., J. Electrochem. Soc., Vol.141, No. 3, March 1994 787795 Google Scholar
[7] Raaijmakers, I. J. and Yang, J., Applied Surface Science 73(1993) 3141 Google Scholar
[8] Ishihara, K., Yamazaki, K., Hamada, H., Kamisako, K. and Tarui, Y., Jpn. J. Appl. Phys., Vol.29, No. 10 (1990) 21032105 Google Scholar
[9] Suntola, T., Atomic Layer Epitaxy, Handbook of Crystal Growth, 3, 601, edited by Hurle, D. T. J. (1994).Google Scholar
[10] Satta, A., Beyer, G., Maex, K., Elers, K., Haukka, S., A Vatomme, Mat. Res. Soc. Symp. Proc. Vol.. 612 (2000)Google Scholar
[11] Ritala, M., Leskela, M., Rauhala, E. and Haussalo, P., J. Electrochem. Soc., Vol.142, No.8, 1995 27312737 Google Scholar
[12] Ahn, S. D., Lee, H. B. and Kang, S. W., Jpn. J. Appl. Phys., Vol.39, part1, No.6A, (2000) 33493354 Google Scholar