Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T22:02:04.918Z Has data issue: false hasContentIssue false

Complementary Resistive Switches (CRS): High speed performance for the application in passive nanocrossbar arrays

Published online by Cambridge University Press:  23 June 2011

Roland Rosezin
Affiliation:
Peter Grünberg Institut, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany and JARA – Fundamentals for Future Information Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Eike Linn
Affiliation:
Institut für Werkstoffe der Elektrotechnik II, RWTH Aachen, 52074 Aachen, Germany
Lutz Nielen
Affiliation:
Institut für Werkstoffe der Elektrotechnik II, RWTH Aachen, 52074 Aachen, Germany
Carsten Kügeler
Affiliation:
Peter Grünberg Institut, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany and JARA – Fundamentals for Future Information Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Rainer Bruchhaus
Affiliation:
Peter Grünberg Institut, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany and JARA – Fundamentals for Future Information Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Rainer Waser
Affiliation:
Peter Grünberg Institut, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany and JARA – Fundamentals for Future Information Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany Institut für Werkstoffe der Elektrotechnik II, RWTH Aachen, 52074 Aachen, Germany
Get access

Abstract

In this report, the fabrication and electrical characterization of fully vertically integrated complementary resistive switches (CRS), which consist of two anti-serially connected Cu-SiO2 memristive elements, is presented. The resulting CRS cells are initialized by a simple procedure and show high uniformity of resistance states afterwards. Furthermore, the CRS cells show high switching speeds below 50 ns, making them excellent building blocks for next generation non-volatile memory based on passive nanocrossbar arrays.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Waser, R. and Aono, M., Nat. Mater. 6, 833 (2007).Google Scholar
2. Strukov, D.B. and Williams, R.S., Appl. Phys. A-Mater. Sci. Process. 94, 515 (2009).Google Scholar
3. Waser, R., Dittmann, R., Staikov, G., and Szot, K., Adv. Mater. 21, 2632 (2009).Google Scholar
4. Kügeler, C., Rosezin, R., Linn, E., Bruchhaus, R., and Waser, R., Appl. Phys. A - Mater. Sci. Process. 102, 791 (2011).Google Scholar
5. Linn, E., Rosezin, R., Kügeler, C., and Waser, R., Nat. Mater. 9, 403 (2010).Google Scholar
6. Strukov, D.B., Snider, G.S., Stewart, D.R., and Williams, R.S., Nature 453, 80 (2008).Google Scholar
7. Schindler, C., Weides, M., Kozicki, M.N., and Waser, R., Appl. Phys. Lett. 92, 122910 (2008).Google Scholar
8. Rosezin, R., Linn, E., Nielen, L., Kügeler, C., Bruchhaus, R., and Waser, R., IEEE Electron Device Letters 32, 191 (2011).Google Scholar
9. Rosezin, R., Linn, E., Kügeler, C., Bruchhaus, R., and Waser, R., IEEE Electron Device Letters, in press, (2011).Google Scholar