Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T08:33:54.540Z Has data issue: false hasContentIssue false

Comprehensive light trapping study of next generation thin film solar cells

Published online by Cambridge University Press:  03 March 2011

Zhou Zhou
Affiliation:
Shanghai Institute of Microsystem and Information Technology, Shanghai, China 200050
Jian Zhou
Affiliation:
Shanghai Institute of Microsystem and Information Technology, Shanghai, China 200050
Xiaowei Sun
Affiliation:
Shanghai Institute of Microsystem and Information Technology, Shanghai, China 200050
Tim Cheng
Affiliation:
3G Institute of Renewable Energy, Cambridge, MA 02141
Shengqi Wang
Affiliation:
3G Institute of Renewable Energy, Cambridge, MA 02141
Yasha Yi*
Affiliation:
3G Institute of Renewable Energy, Cambridge, MA 02141 CUNY Graduate Center, New York, NY 10016 New York University, New York, NY 10012
*
*Corresponding author: yys@alum.mit.edu
Get access

Abstract

Light trapping is one of the key challenges for the next generation of thin film solar cells. In this work, we have identified the distinct light trapping effects for short and long wavelength solar spectrum ranges, by investigating lighting trapping structures on both sides of Si thin film solar cells. The sub-wavelength moth-eye-like photonic front surface and multi-layer grating photonic crystal reflector on the bottom surface are studied in detail via the Finite Difference Time Domain method for its solar energy absorption characteristics. Our study reveals the drastic difference in the light trapping effects within the solar spectrum wavelength. This work may provide guidance for efficiency enhancement of next generation thin film photovoltaic cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhao, J., Wang, A., Green, M. A., and Ferrazz, F., ‘19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cellsAppl. Phys. Lett., 73, 1991 (1998)Google Scholar
2. Chopra, K. L., Paulson, P. D., and Dutta, V., ‘Thin-film solar cells: an overviewProg. Photovolt: Res. Appl. 12, 69 (2004)Google Scholar
3. Sun, Y., and Forrest, S. R., ‘Enhanced light out-coupling of organic light-emitting devices using embedded low-index gridsNat. Photonics, 2, 483 (2008)Google Scholar
4. Li, W. D., Chou, S. Y., ‘Solar-blind deep-UV band-pass filter (250-350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithographyOpt. Exp. 18, 931 (2010)Google Scholar
5. Campbell, P. and Green, M. A., ‘Light trapping properties of pyramidally textured surfacesJ. Appl. Phys. 62, 243 (1987)Google Scholar
6. Eisele, C., Nebel, C. E., and Stutzmann, M., ‘Periodic light coupler gratings in amorphous thin film solar cellsJ. Appl. Phys., 89, 7722 (2001)Google Scholar
7. Zeng, L., Bermel, P., Yi, Y., Alamariu, B. A., Broderick, K. A., Liu, J., Hong, C., Duan, X., Joannopoulos, J., and Kimerling, L. C., ‘Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflectorAppl. Phys. Lett. 93 221105 (2008); L. Zeng, Y. Yi, C. Hong, J. Liu, X. Duan and L. Kimerling, ‘Efficiency enhancement in Si solar cells by textured photonic crystal back reflector’ Appl. Phys. Lett. 89, 111111(2006) Google Scholar
8. Zhou, D. and Biswas, R., ‘Photonic crystal enhanced light-trapping in thin film solar cellsJ. Appl. Phys., 103, 093102 (2008); R. Biswas and D. Zhou, Mater. Res. Soc. Symp. Proc. 989, A03.02(2007) Google Scholar
9. Mutitu, J. G., Shi, S., Chen, C., Creazzo, T., Barnett, A., Honsberg, C. and Prather, D. W., ‘Thin film solar cell design based on photonic crystal and diffractive grating structuresOpt. Exp., 16, 15238 (2008)Google Scholar
10. Berginski, M., Hüpkes, J., Schulte, M., Schöpe, G., Stiebig, H., Rech, B. and Wuttig, M., ‘The effect of front ZnO: Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cellsJ. App. Phys, 101, 074903 (2007)Google Scholar
11. Nagel, J. R. and Scarpulla, M. A., ‘Enhanced absorption in optically thin solar cells by scattering from embedded dielectric nanoparticlesOpt. Exp., 18, A139 (2010)Google Scholar
12. Fahr, S., Rockstuhl, C., and Lederer, F., ‘Engineering the randomness for enhanced absorption in solar cellsAppl. Phys. Lett., 92, 171114 (2008)Google Scholar
13. Catchpole, K. R. and Polman, A., ‘Design principles for particle plasmon enhanced solar cellsAppl. Phys. Lett., 93, 191113 (2008)Google Scholar
14. Beck, F. J., Polman, A., and Catchpole, K. R., ‘Tunable light trapping for solar cells using localized surface plasmonsJ. Appl. Phys. 105, 114310 (2009)Google Scholar
15. Pillai, S., Catchpole, K. R., Trupke, T., and Green, M. A., ‘Surface plasmon enhanced silicon solar cellsJ. Appl. Phys. 101, 093105 (2007)Google Scholar
16. Sun, C. H., Jiang, P., and Jiang, B., ‘Broadband moth-eye antireflection coatings on siliconAppl. Phys. Lett., 92, 061112 (2008)Google Scholar
17. Taflove, A. and Hagness, S. C., Computational Electrodynamics: The Finite Difference Time Domain Method, Artech House, Inc. (2005)Google Scholar
18. Handbook of Optical Constants of Solids, edited by Palik, E. D., (Academic Press, Orlando, FL, 1985), Vol. 5.Google Scholar