Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T21:59:07.819Z Has data issue: false hasContentIssue false

Compression of Single-Crystal Micropillars of the ζ Intermetallic Phase in the Fe-Zn System

Published online by Cambridge University Press:  20 December 2012

Masahiro Inomoto
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
Norihiko L. Okamoto
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
Haruyuki Inui
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
Get access

Abstract

The deformation behaviour of the ζ (zeta) phase in the Fe-Zn system has been investigated via room-temperature compression tests of single-crystal micropillar specimens prepared by the focused ion beam method. Trace analysis of slip lines indicates that {110} slip occurs for the specimens investigated in the present study. Although the slip direction has not been uniquely determined, comparison of Schmid factors and yield stress values suggests that the slip direction might be <1$\overline 1 $2>, which is inconsistent with the easiest slip system {110}[001] predicted on the basis of the primitive Peierls-Nabarro model.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ghoniem, M. A. and Lohberg, K., Metall. 26, 1026 (1972).Google Scholar
Massalski, T. B., Binary Alloy Phase Diagrams, Vol. 2 (ASM, Metals Park, OH, 1986) p.1128.Google Scholar
Kubaschewski, O., Iron - Binary Phase Diagrams (Springer-Verlag, New York, 1982) p.172.Google Scholar
Hong, M. H. and Saka, H., Philos. Mag. 74, 509 (1996).CrossRefGoogle Scholar
Mises, R. V., Angew, R. Z.. Math. Mech. 8, 161 (1928).Google Scholar
Brown, P. J., Acta Crystallogr. 15, 608 (1962).CrossRefGoogle Scholar
Gellings, P. J., Bree, E. W., Gierman, G., Z.Metallkd. 70, 315 (1979).Google Scholar
Belin, R., Tillard, M. and Monconduit, L., Acta Crystallogr. C56, 267 (2000).Google Scholar
Peierls, R., Proc. Phys. Soc. 52, 34 (1940).CrossRefGoogle Scholar
Nabarro, F. R. N., Proc. Phys. Soc. 52, 90 (1940).CrossRefGoogle Scholar
Uchic, M. D., Dimiduk, D. M., Florando, J. N. and Nix, W. D., Science 305, 986 (2004).10.1126/science.1098993CrossRefGoogle Scholar
Csikor, F. F., Motz, C., Weygand, D., Zaiser, M. and Zapperi, S., Science 318, 251 (2007).CrossRefGoogle Scholar
Dimiduk, D. M., Uchic, M. D. and Parthasarathy, T. A., Acta Mater. 53, 4065 (2005).CrossRefGoogle Scholar