Article contents
The Computational Materials Design Facility (CMDF): A powerful framework for multi-paradigm multi-scale simulations
Published online by Cambridge University Press: 26 February 2011
Abstract
Predicting the properties and behavior of materials by computer simulation from a fundamental, ab initio perspective has long been a vision of computational material scientists. The key to achieving this goal is utilizing hierarchies of paradigms and scales that connect macrosystems to first principles quantum mechanics (QM). Here we describe a new software environment, the “Computational Materials Design Facility” (CMDF), capable of simulations of complex materials studies using a variety of simulation paradigms. The CMDF utilizes a Python scripting layer to integrate different computational tools to develop multi-scale simulation applications. We have integrated DFT QM methods, the first principles ReaxFF reactive force field, empirical all atom force fields (FFs), mesoscale and continuum methods. The central data structure Extended OpenBabel (XOB) plays a critical role as glue between applications. We demonstrate the usefulness of CMDF in examples that couple complex chemistry and mechanical properties during dynamical failure processes, as for example in a study of cracking of Ni under presence of O2.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2006
References
REFERENCES
- 5
- Cited by