Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T06:53:15.219Z Has data issue: false hasContentIssue false

Computer Simulation of Free-Surfaces in Close-Packed Structures

Published online by Cambridge University Press:  21 February 2011

J.R. Fernández
Affiliation:
CONICET
A.M. Monti
Affiliation:
Depto. Ciencia de Materiales, Gcia. Desarrollo, CNEA, Avda. Libertador 8250, Zip. 1429, Buenos Aires, Argentina
R.C. Pasianot
Affiliation:
Depto. Ciencia de Materiales, Gcia. Desarrollo, CNEA, Avda. Libertador 8250, Zip. 1429, Buenos Aires, Argentina
Get access

Abstract

The static relaxation method was applied to the study of free-surfaces in fcc (Ni,Al,Ni3Al) and hcp (Ti,Zr,Mg) lattices bounded by many-body interaction potentials of the EAM-type. The present calculated changes in interlayer spacings were compared with measured and other theoretical results. Vibrational modes of atoms in the surface and in planes below the surface were analyzed in the Einstein and the "cluster" approximations. The latter explicitly includes coupling effects. Frequency variations with the distance to the surface are obtained in the former approximation and vibration modes for a set of atoms in the second one.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Ackland, G.J. and Finnis, M.W., Phil. Mag. A 54, 301 (1986).CrossRefGoogle Scholar
2 Chen, S.P., Voter, A.F. and Srolovitz, D.J., Phys. Rev. Lett. 57, 1308 (1986).CrossRefGoogle Scholar
3 Foiles, S.M. and Daw, M.S., J. Mater. Res. 2, 5 (1987).CrossRefGoogle Scholar
4 Savino, E.J. and Farkas, D., Phil. Mag. A 58, 227 (1988).CrossRefGoogle Scholar
5 Daw, M.S. and Baskes, M.I., Phys. Rev. B 29, 6443 (1984).CrossRefGoogle Scholar
6 Chen, S.P., Surf. Sci. Lett. 264, L168 (1992).Google Scholar
7 Daw, M.S. and Baskes, M.I., Phys. Rev. Lett. 50, 1285 (1983).CrossRefGoogle Scholar
8 Finnis, M.W. and Sinclair, J.E., Phil. Mag. A 50, 45 (1984).CrossRefGoogle Scholar
9 Ercolesi, F., Tosatti, E. and Parrinello, M., Phys. Rev. Lett. 57, 719 (1986).CrossRefGoogle Scholar
10 Carlsson, A.E., Sol. Stat. Phys. 43, 1 (1990).CrossRefGoogle Scholar
11 Voter, A.F. and Chen, S.P., Mater. Res. Soc. Proc. 82, 175 (1987).CrossRefGoogle Scholar
12 Fernández, J.R. and Monti, A.M., phys. stat. sol. (b) 179, 337 (1993).CrossRefGoogle Scholar
13 Oh, D.J. and Johnson, R.A., J. Mater.Res. 3, 471 (1988).CrossRefGoogle Scholar
14 Pasianot, R.C. and Savino, E.J., Phys. Rev. B45, 12704 (1992).CrossRefGoogle Scholar
15 Norgett, M.J., Perrin, R.C. and Savino, E.J., J. Phys. F2, L73 (1972).CrossRefGoogle Scholar
16 Hatcher, R.D., Zeller, R. and Dederichs, P.H., Phys. Rev. B19, 5083 (1979).CrossRefGoogle Scholar
17 Jona, F. and Marcus, P.M., The Structure of Surfaces, edited by J.F.van, der Veen, and A.Hove, M., Vol. 11 of Springer Series in Surface Sciences (Springer, Berlin, 1988) p.90.CrossRefGoogle Scholar
18 Monti, A.M., phys. stat. sol.(b) 168, 49 (1991).CrossRefGoogle Scholar
19 Murr, L.E., Interfacial Phenomena in Metals and Alloys, (Addison-Wesley, Reading MA 1975) p. 126 Google Scholar