Published online by Cambridge University Press: 15 February 2011
We have simulated strain energy effects and surface- and interface-energy effects on grain growth in thin films, using properties of polycrystalline Ag (p-Ag) on single crystal (001) Ni on (001) MgO for comparison with experiments. Surface- and interface-energy and strain energy reduction drive the growth of grains of specific crystallographic orientations. The texture that will result when grain growth has occurred minimizes the sum of these driving forces. In the elastic regime, strain energy density differences result from the orientation dependence of the elastic constants of the biaxially strained films. In the plastic regime, strain energy also depends on grain diameter and film thickness. In p-Ag/(001) Ni, surface- and interface-energy minimization favors Ag grains with (11) texture. In the absence of a grain growth stagnation, the texture at later times is always (111). However, for high enough strains and large enough thicknesses, the strain energy driving force can favor a (001) texture at early times, which reverts to a (111) texture at later times, once the grains have yielded.