Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T01:16:54.827Z Has data issue: false hasContentIssue false

Concentric Metallic-Piezoelectric Microtube Arrays

Published online by Cambridge University Press:  01 February 2011

Hongjin Fan
Affiliation:
hfan05@esc.cam.ac.uk, University of Cambridge, Dept. of Earth Sciences, Downing St., Cambridge, CB2 3EQ, United Kingdom, 44-1223-333-408, 44-1223-333-450
S. Kawasaki
Affiliation:
skaw05@esc.cam.ac.uk, University of Cambridge, Department of Earth Sciences, Cambridge, CB2 3EQ, United Kingdom
J. M. Gregg
Affiliation:
M.Gregg@qub.ac.uk, Centre for Nanostructured Media, Queen's University of Belfast, Belfast, BT7 1NN, United Kingdom
A. Langner
Affiliation:
alangner@mpi-halle.mpg.de, Max Planck Institute of Microstructure Physics, Halle, 06120, Germany
T. Leedham
Affiliation:
alangner@mpi-halle.mpg.de, Max Planck Institute of Microstructure Physics, Halle, 06120, Germany
J. F. Scott
Affiliation:
jsco99@esc.cam.ac.uk, University of Cambridge, Department of Earth Sciences, Cambridge, CB2 3EQ, United Kingdom
Get access

Abstract

Trilayer concentric metallic-piezoelectric-metallic microtubes are fabricated by infiltrating porous Si templates with sol precursors. LaNiO3 (LNO) is used as the inner and outer electrode material and PbZrTiO3 (PZT) is the middle piezoelectric layer. Structure of the microtubes is characterized in details using scanning and transmission electron microscopy which are equipped with energy dispersive X-ray spectroscopy for elemental mapping. The hysteresis of a trilayered thin film structure of LNO-PZT-LNO is shown. This trilayered tubes might find applications in inkjet printing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Luo, Y. Lee, S.K. Hofmeister, H. Steinhart, M. Gösele, U., Nano Lett. 4, 143 (2004)Google Scholar
2. Steinhart, M. Jia, Z. Schaper, A. K. Wehrspohn, R. B. Gösele, U., and Wendorff, J. H. Adv. Mater. 15, 706 (2003)Google Scholar
3. Hernandez, B. A. Chang, K. S. Fisher, E. R. and Dorhout, P. K. Chem. Mater. 14, 480 (2002)Google Scholar
4. Luo, Y. et al. , Appl. Phys. Lett. 83, 440 (2003)Google Scholar
5. Morrison, F. D. Ramsay, L. Scott, J. F. J. Phys.: Condens. Matter 15, L527 (2003).Google Scholar
6. Zhang, X. Y. Lai, C. W. Zhao, X. Wang, D. Y. Dai, J. Y. Appl. Phys. Lett. 87, 143102 (2005)Google Scholar
7. Zhao, L. Steinhart, M. Yu, J. Gösele, U., J. Mater. Res. 21, 685 (2006)Google Scholar
8. Bharadwaja, S. S. N. Olszta, M. Trolier-McKinstry, S., Li, X. Mayer, T. S. Roozeboom, F. J. Am. Ceram. Soc. 89, 2695 (2006)Google Scholar
9. Alexe, M. Hesse, D. Schmidt, V. Senz, S. Fan, H. J. Zacharias, M. Gösele, U., Appl. Phys. Lett. 89, 172907 (2006)Google Scholar
10. Kawasaki, S. et al. , Appl. Phys. Lett. 92, 053109 (2008)Google Scholar
11. Zhao, L. Lu, T. Z. Zacharias, M. Yu, J. Shen, J. Hofmeister, H. Steinhart, M. Gösele, U., Adv. Mater. 18, 363 (2006)Google Scholar
12. Kim, Y. et al. , presented in MRS 2008 Spring meeting, San Francisco, in symposium F.Google Scholar
13. Shelimov, K. B. Davydov, D. N. and Moskovits, M. Appl. Phys. Lett. 11, 1722 (2000)Google Scholar
14. Zhang, X. Y. Zhao, X. Lai, C. W. Wang, J. Tang, X. G. and Dai, J. Y. Appl. Phys. Lett. 85, 4190 (2004)Google Scholar
15. Meng, X. J. Sun, J. L. Yu, J. Ye, H. J. Guo, S. L. and Chu, J. H. Appl. Surf. Sci. 171, 68 (2001)Google Scholar