Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T14:19:15.242Z Has data issue: false hasContentIssue false

Concept of Mismatch and Relaxation Derived from Conductivity Spectra of Solid Electrolytes

Published online by Cambridge University Press:  10 February 2011

K. Funke
Affiliation:
University of Münster, Institute of Physical Chemistry, Schloßplatz 4/7, 48149 Münster, Germany
D. Wilmer
Affiliation:
University of Münster, Institute of Physical Chemistry, Schloßplatz 4/7, 48149 Münster, Germany
Get access

Abstract

Crystalline ion conductors like RbAg4I5 and others display a characteristic shape of their dispersive conductivities at frequencies below the microwave regime. As the temperature is decreased, the onset of the dispersion is shifted to lower frequencies and thus the characteristic shape of the dispersion becomes visible in an increasingly broad frequency range. In a log-log plot of the frequency-dependent conductivity, the slope is found to increase continuously, but not to surpass unity. For the first time, this behavior is now consistently explained. The particular shape of the dispersion is shown to be equivalent to a proportionality of the rates of relaxation via the singleand many-particle routes. This is the essence of the concept of mismatch and relaxation (CMR). Model conductivity spectra based on the CMR include the UDR (universal dynamic response) as well as the NCL (nearly constant loss) behavior. Both universalities are thus traced back to a common dynamic origin.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jonscher, A. K., Phys. Stat. Solidi (a) 32, 665 (1975).Google Scholar
2. Jonscher, A. K., Nature 267, 673 (1977).Google Scholar
3. Almond, D. P., Duncan, G. K., and West, A. R., Solid State Ionics 8, 159 (1983).Google Scholar
4. Ngai, K. L., Comments Solid State Phys. 9, 127 (1979).Google Scholar
5. Ngai, K. L., Solid State Ionics 5, 27 (1981).Google Scholar
6. Ngai, K. L. and Strom, U., Phys. Rev. B 38, 10350 (1988).Google Scholar
7. Funke, K., Prog. Solid St. Chem. 22, 111 (1993).Google Scholar
8. Funke, K., J. Non-Cryst. Solids 172–174, 1215 (1994).Google Scholar
9. Funke, K., Solid State Ionics 94, 27 (1997).Google Scholar
10. Lee, W.-K., Liu, J. F., and Nowick, A. S., Phys. Rev. Letters 67, 1559 (1991).Google Scholar
11. Lange, M., PhD thesis, University of Muenster, 1998.Google Scholar
12. Funke, K., Roling, B., and Lange, M., Solid State Ionics 105, 195 (1998).Google Scholar
13. Roling, B., Happe, A., Funke, K., and Ingram, M., Phys. Rev. Lett. 78, 2160 (1997).Google Scholar
14. Roling, B., Solid State Ionics 105, 185 (1998).Google Scholar
15. Hoppe, R., Kloidt, T., and Funke, K., Ber. Bunsenges. Phys. Chem. 95, 1025 (1991).Google Scholar
16. Funke, K., Kloidt, T., Wilmer, D., and Carlile, C. J., Solid State Ionics 53–56, 947 (1992).Google Scholar
17. Staikov, G., Lorenz, W., Wiesbeck, W., and Breiter, M., Solid State Ionics 93, 85 (1997).Google Scholar
18. Nold, M., PhD thesis, University of Karlsruhe, 1995.Google Scholar
19. Froese, A., PhD thesis, University of Karlsruhe, 1996.Google Scholar
20. Daidouh, A., Veiga, M., and Pico, C., Solid State Ionics 104, 285 (1997).Google Scholar
21. Isasi, J., Lopez, M., and Veiga, M., Solid State Ionics 89, 321 (1996).Google Scholar
22. Saito, Y, Ado, K., Asai, T., Kageyama, H., and Nakamura, O., Solid State Ionics 47, 149 (1991).Google Scholar
23. Maass, P., Petersen, J., Bunde, A., Dieterich, W., and Roman, H. E., Phys. Rev. Lett. 66, 52 (1991).Google Scholar