Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T08:59:30.222Z Has data issue: false hasContentIssue false

Consolidated Bioprocessing using an Edible Mushroom

Published online by Cambridge University Press:  31 January 2011

Ryoji Mizuno
Affiliation:
rmizuno@affrc.go.jp, National Food Research Institute, Tsukuba, Japan
Hitomi Ichinose
Affiliation:
hichi@affrc.go.jp, National Food Research Institute, Tsukuba, Japan
Tomoko Maehara
Affiliation:
tmaehara@affrc.go.jp, National Food Research Institute, Tsukuba, Japan
Koji Takabatake
Affiliation:
takabata@fes.pref.toyama.jp, Toyama Prefectural Agricultural, Forestry and Fisheries Research, Foret Institute, Tateyama, Japan
Get access

Abstract

Worldwide attention has now focused on bioethanol production to combat global warming and to safeguard global energy. Lignocelluloses are expected to be utilized in future as fuel ethanol production because of competition between food and fuel production. One of the major problems in producing ethanol from lignocellulosic biomass is high production cost and consolidated bioprocessing (CBP) is gaining recognition as a potential breakthrough for low-cost biomass processing. Basidiomycetes appear suitable for use in CBP because they can achieve the both events of lignocellulose breakdown and ethanol fermentation. We are developing CBP bioethanol production by using Flammulina velutipes from sorghums. It turns out the relationship between varietal characteristics of sorghums and ethanol conversion properties of F. velutipes, and the direction should be performed in the future became clear.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Himmel, M. E. Ding, S. Y. Johnson, D. K. Adney, W. S. Nimlos, M. R. Brady, J. W. and Foust, T. D. Science 315, 804 (2007).Google Scholar
2 Foust, T. S. Ibsen, K. N. Dayton, D. C. Hess, J. R. and Kenney, K. E. “The biorefinery,” Biomass Recalcitrance: Deconstructing the Plant Cell Wall for Bioenergy, ed. Himmel, M. E. (Blackwell, 2008) pp.735.Google Scholar
3 van, W. H. Lynd, L. R. Haan, R. den, and McBride, J. E. Adv. Biochem. Eng. Biotechnol. 108, 205 (2007).Google Scholar
4 Xu, Q. Singh, A. and Himmel, M. E. Curr. Opin. Biotechnol. 20, 1 (2009).Google Scholar
5 Lynd, L. R. Weimer, P. J. Zyl, W. H. van, Pretorius, I. S. Microbiol. Mol. Biol. Rev. 66, 506 (2002).Google Scholar
6 Somogyi, M. J. Biol. Chem. 195, 19 (1952).Google Scholar
7 Morris, D. L. Science, 107, 254 (1948).Google Scholar
8 Mejbaum, W. Z. Physiol. Chem. 285, 117 (1939).Google Scholar
9 Karhumaa, K. Wiedemann, B. Hahn-Hagerdal, B., Boles, E. and Gorwa-Grauslund, M. F., Microb. Cell Factories 10, 5 (2006).Google Scholar
10 Katahira, S. Mizuike, A. Fukuda, H. and Kondo, A. Appl. Microbiol. Biotechnol. 72, 1136 (2006).Google Scholar
11 Fujita, Y. Ito, J. Ueda, M. Fukuda, H. and Kondo, A. A, Appl. Environ. Microbiol. 70, 1207 (2004).Google Scholar
12 Becker, J. and Boles, E. Appl. Environ. Microbiol. 69, 4144 (2003).Google Scholar
13 Katahira, S. Fujita, Y. Mizuike, A. Fukuda, H. and Kondo, A. Appl. Environ. Microbiol. 70, 5407 (2004).Google Scholar
14 Rabinovich, M. L. Melnik, M. S. Boloboba, A. V. Appl. Biochem. Microbiol. 38, 305 (2002).Google Scholar
15 Cooke, R. C. and Rayner, A. D. M. Ecology of saprotrophic fungi, (Longman, 1984).Google Scholar
16 Cullen, D. J. Biotechnol., 53, 273 (1997).Google Scholar
17 Thorn, R. G. Reddy, C. A. Harris, D. and Paul, E. A. Appl. Environ. Microbiol. 62, 4288 (1996).Google Scholar
18 Okamura, T. Ogata, T. Toyoda, M. Tanaka, M. Minamimoto, N. Takeno, T. Noda, H. Fukuda, S., and Ohsugi, M. Mushroom Sci. Biotechnol. 8, 109 (2000).Google Scholar
19 Okamura, T. Ogata, T. Minamimoto, N. Takeno, T. Noda, H. Fukuda, S. and Ohsugi, M. Biosci. Biotechnol. Biochem., 65, 1596 (2001).Google Scholar
20 Mizuno, R. Ichinose, H. Maehara, T. Takabatake, K. and Kaneko, S. Biosci. Biotechnol. Biochem. 73, 2240 (2009).Google Scholar
21 Barnett, J. A. Adv. Carbohydr. Chem. Biochem. 32, 125 (1976).Google Scholar
22 Woods, J. Ph D. Thesis King's College, London (2000).Google Scholar
23 Mizuno, R. Ichinose, H. Honda, M. Takabatake, K. Sotome, I. Maehara, T. Takai, T. Gau, M. Okadome, H. Isobe, S. and Kaneko, S. Biosci. Biotechnol. Biochem. 73, 1671 (2009).Google Scholar
24 Bout S, S. and Vermerris, W. Mol. Gen. Genomics 269, 205 (2003).Google Scholar