Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T07:00:47.410Z Has data issue: false hasContentIssue false

Control of Nucleation to Realize High Density Si Nanoparticles on SiO2 Thin Films

Published online by Cambridge University Press:  17 March 2011

Jian-hong Zhu
Affiliation:
Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, U.S.A.
W. Thomas Leach
Affiliation:
Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, U.S.A.
John G. Ekerdt
Affiliation:
Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, U.S.A.
Get access

Abstract

A non-thermal method to facilitate nucleation for subsequent thermal chemical vapor deposition of Si nanoparticles on SiO2/Si(001) with high density and uniform size is demonstrated. Submonolayers of Si adatoms are predeposited on SiO2/Si(001) substrates by hot-wire chemical vapor deposition with disilane in an UHV chamber. The nanoparticles are grown with a disilane pressure of 1×10-4 Torr at 550 °C. The Si nanoparticles density is increased and size distribution is narrowed by predeposition of Si adatoms when compared to thermal growth on bare SiO2/Si(001). The nanoparticles density can be controlled by the amount of Si adatom predeposition. 1.2×1012 cm-2 density and 5.5 nm size are demonstrated on SiO2/Si(001) under UHV-CVD conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tiwari, S., Rana, F., Hanafi, H., Hartstein, A., Crabbé, E. F., and Chan, K., Appl. Phys. Lett. 68, 1377 (1996).Google Scholar
2. Fukuda, M., Nakagawa, K., Miyazaki, S., and Hirose, M., Appl. Phys. Lett. 70, 2291 (1997).Google Scholar
3. Sugiyama, N., Tezuka, T., Kurobe, A., J. of Crystal Growth, 192, 395 (1998).Google Scholar
4. Nakajima, A., Sugita, Y., Kawamura, K., Tomita, H., and Yokoyama, N., Jpn. J. Appl. Phys. 35, L189 (1996).Google Scholar
5. Hu, Y. Z., Zhao, C. Y., Basa, C., Gao, W. X., and Irene, E. A., Appl. Phys. Lett. 69, 485 (1996).Google Scholar
6. Baron, T., Martin, F., Mur, P., Wyon, C., and Dupuy, M., J. of Crystal Growth, 209, 1004 (2000).Google Scholar
7. Hu, Y. Z., Diehl, D. J., Zhao, C. Y., Wang, C. L., Liu, Q., Irene, E. A., Christensen, K. N., Venable, D., and Maher, D. M., J. Vac. Sci. Technol. B 14, 744 (1996).Google Scholar
8. Basa, C., Hu, Y. Z., Tinani, M., and Irene, E. A., J. Vac. Sci. Technol. A 16, 3223 (1998).Google Scholar
9. Miyazaki, S., Hamamoto, Y., Yoshida, E., Ikeda, M., and Hirose, M., Thin Solid Films, 369, 55 (2000).Google Scholar
10. Yasuda, T., Nishizawa, M., Yamasaki, S., and Tanaka, K., J. Vac. Sci. Technol. B 18, 1752 (2000).Google Scholar
11. Molenbroek, E. C., Mahan, A. H., and Gallagher, A., J. Appl. Phys. 82, 1909 (1997) and references therein.Google Scholar
12. Duan, H. L., Zaharias, G. A., Bent, S. F., Mat. Res. Soc. Symp. Proc. 664, A3.1 (2001).Google Scholar