Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-21T13:14:18.785Z Has data issue: false hasContentIssue false

Control of ZnO Morhpology by Solution Route

Published online by Cambridge University Press:  21 March 2011

Lingdong Sun
Affiliation:
Chunhua Yan State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China
Jun Zhang
Affiliation:
Chunhua Yan State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China
Chunsheng Liao
Affiliation:
Chunhua Yan State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China
Get access

Abstract

In this paper, ZnO with a rich variety of well-defined morphologies have been achieved by solution route using different kind of precursors, which can prepare particles by only one step without calcination. The influences of solvent, and temperature on the particle size and morphology of ZnO were investigated. It was revealed by the scanning electron microscope (SEM) and transmission electron microscope (TEM) images that the morphological feature of ZnO can be controlled as rod-, polyhedron-, fluffy sphere-, snowflake- and flower-like, etc. XRD measurement showed that all of the ZnO samples with different morphologies has the same hexagonal structure, which is well consistent with electron diffraction (ED) characterization. This communication not only provides promising candidates for materials science due to the importance of shape in relationship with materials, but also presents an effective route to synthesize the well-defined inorganic materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yang, H.; Coombs, D.; Ozin, G. A. Nature. 386,392 (1997).Google Scholar
2. Pinna, N.; Weiss, K.; Urban, Joachim.; Pileni, M. P. Adv. Mater. 13, 261 (2001).Google Scholar
3. Yang, J.; Cheng, G. H.; Zeng, J. H.; Yu, S. H.; Liu, X. M.; Qian, Y. T. Chem. Mater. 13, 848(2001).Google Scholar
4. Peng, X.; Manna, L.; Yang, W D; Wickham, J; Scher, E; Kadavanich, A; Alivisatos, A. P. Nature. 404, 59 (2000).Google Scholar
5. Peng, Z. A; Peng, X. G. J. Am. Chem. Soc. 123, 1389 (2001).Google Scholar
6. Jun, Y. M.; Lee, S. M.; Kang, N. J.; Cheon, J. W. J. Am. Chem. Soc. 123, 5150 (2001).Google Scholar
7. Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science. 291, 1947 (2001).Google Scholar
8. Kong, Y. C.; Yu, D. P.; Zhang, B.; Fang, W.; Feng, S. Q. Appl. Phys. Lett. 78, 407 (2001).Google Scholar
9. Li, Y.; Meng, G. W.; Zhang, L. D.; Phillipp, F. Appl. Phys. Lett. 76, 2011 (2000).Google Scholar
10. Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Science. 292, 1897 (2001).Google Scholar
11. Jezequel, D.; Guenot, J.; Jouini, N.; Fievet, F. J. Mater. Res. 10, 77 (1995).Google Scholar
12. Sekiguchi, T.; Miyashita, S.; Obara, K.; Shishido, T.; Sakagami, N. J. Cryst. Growth. 214/ 215, 72 (2000).Google Scholar
13. Cao, H.; Zhao, Y. G.; Ho, S. T.; Seelig, E. W.; Wang, Q. H.; Chang, R. P. H. Phys. Rev. Lett. 82, 2278 (1999).Google Scholar