Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-01T04:25:13.196Z Has data issue: false hasContentIssue false

Controlling nanoparticle template morphology: effect of solvent chemistry

Published online by Cambridge University Press:  11 February 2011

Maria M. Cortalezzi
Affiliation:
Energy and Environmental Systems Institute, Rice University, 6100 Main St. MS-317, Houston, TX 77005, USA.
Vicki Colvin
Affiliation:
Department of Chemistry, Rice University, 6100 Main St. MS-60, Houston, TX 77005, USA.
Mark R. Wiesner
Affiliation:
Energy and Environmental Systems Institute, Rice University, 6100 Main St. MS-317, Houston, TX 77005, USA.
Get access

Abstract

Porous solids were obtained from self-assembled deposits of silica nanoparticles used as templates to form 3-D porous membranes. The effect of the solvent chemistry on the morphology of the deposits was investigated. The parameters of interest are surface tension and ionic strength of the solvent, due to electrostatic and capillary interactions. Deposits of nanoparticles of different sizes were obtained for a variety of conditions. The deposits were imaged using SEM and showed distinctive structures for each of the solvent chemistries. The phenomenon is consistent with the DVLO theory and calculations of capillary interaction energy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jiang, P., Hwang, K. S., Mittleman, D. M., Bertone, J. F., Colvin, V. L., Journal of the American Chemical Society, 1999. 121(50): p. 1163011637.Google Scholar
2. Gates, B., Yin, Y., Xia, Y., Chemistry of Materials, 1999. 11(10): p. 28272836.Google Scholar
3. Velev, O.D., Jede, T. A., Lobo, R. F., Lenhoff, A. M., Nature, 1997. 389: p. 477478.Google Scholar
4. Johnson, S.A., Ollivier, P. J., Mallouk, T. E., Science, 1999. 283: p. 963965.Google Scholar
5. Velev, O.D., Jede, T. A., Lobo, R. F., Lenhoff, A. M., Chemistry of Materials, 1998. 10(11): p. 35973602.Google Scholar
6. Jiang, P., Bertone, J. F., Hwang, K. S., Colvin, V. L., Chemistry of Materials, 1999. 11: p. 21322140.Google Scholar
7. Denkov, N.D., Velev, O. D., Kralchevsky, P. A., Ivanov, I. B., Yosimura, H., Nagayama, K., Langmuir, 1992. 8: p. 31833190.Google Scholar
8. Dimitrov, A.S., Nagayama, K., Langmuir, 1996. 12: p. 13031311.Google Scholar
9. Hiemenz, P.C., Rajagopalan, R., Principles of Colloid and Surface Chemistry. 3rd edition ed. 1997, New York: Marcel Dekker, Inc. Google Scholar
10. Kralchevsky, P.A., Paunov, V. N., Ivanov, I. B., Nagayama, K., Journal of Colloid and Interface Science, 1992. 151(1): p. 7994.Google Scholar
11. Chan, D.Y.C., Henry, J. D., White, L. R., Journal of Colloid and Interface Science, 1981. 79: p. 419.Google Scholar
12. Stober, W., Fink, A., Bohn, E., Journal of Colloid and Interface Science, 1968. 26: p. 6269.Google Scholar
13. Wiessenborn, P.K., Pugh, R.J., Journal of Colloid and Interface Science, 1996. 184: p. 550563.Google Scholar
14. Paunov, V.N., Kralchevsky, P. A., Denkov, N. D., Nagayama, K., Journal of Colloid and Interface Science, 1993. 157: p. 100112.Google Scholar