Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T14:17:18.958Z Has data issue: false hasContentIssue false

Controlling of Microstructure Generation by Direct Holographic Etching of Semiconductor Substrates

Published online by Cambridge University Press:  01 January 1992

K. Toyoda
Affiliation:
Laser Science Research Group, The Institute of Physical and Chemical Research (RIKEN), 2–1 Hirosawa, Wako 351–01, Japan
H. Kumagai
Affiliation:
Laser Science Research Group, The Institute of Physical and Chemical Research (RIKEN), 2–1 Hirosawa, Wako 351–01, Japan
M. Ezaki
Affiliation:
Dept. of Electrical Engineering, Keio University, 3–14–1 Hiyoshi, Kohoku-ku, Yokohama 223, Japan
M. Obara
Affiliation:
Dept. of Electrical Engineering, Keio University, 3–14–1 Hiyoshi, Kohoku-ku, Yokohama 223, Japan
Get access

Abstract

Controlling of microstructure generation was investigated in laser etching of n-GaAs. For single-beam etching and holographic etching with high ratios of average spacing of holographic grating to average spacing of microstructures (Λhr), ripple structures were fabricated. Especially in p-polarization, spatial fluctuation was greater than that in s-polarization. This might occur because phase distortion inherent in the laser beam cannot be eliminated by the p-polarization beam irradiation. For holographic etching with small Λhr ratios, ripple structures were changed into grating structures because these grating structures might be generated in phase with holographic gratings.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Isenor, N. R., Appl. Phys. Lett. 31, 148 (1977).Google Scholar
2. Leamy, H. J., Rozgonyi, G. A., Sheng, T. T., and Celler, G. K., Appl. Phys. Lett. 32, 535 (1978)Google Scholar
3. Maracas, G. N., Harris, G. L., and McFarlane, R. A., Appl. Phys. Lett. 33, 453 (1978).Google Scholar
4. Oron, M. and Sorensen, G., Appl. Phys. Lett. 35, 782 (1979).Google Scholar
5. Fauchet, P.M. and Siegman, A. E., Appl. Phys. Lett. 40, 824 (1982).Google Scholar
6. Brueck, S.R.J. and Ehrlich, D. J., Phys. Rev. Lett. 48, 1678 (1982).Google Scholar
7. Smirl, A. L., Boyd, I. W., Boggess, T. F., Moss, S. C. and vanDriel, H. M., J. Appl. Phys. 60, 1169 (1986).Google Scholar
8. Prokhorov, A. M., Avrutsky, I. A., Bazakutsu, P. V., Sychugov, V. A. and Tishenko, A. V., Nonlinear Surface Electromagnetic Phenomena (North-Holland, Amsterdam, 1991) Chap.9, p.525.Google Scholar
9. Ehrlich, D. J., Brueck, S. R. J., and Tsao, J. Y., Appl. Phys. Lett. 41, 630 (1982).Google Scholar
10. Tsukada, N., Sugata, S., Saito, H., and Mita, Y., Appl. Phys. Lett. 43, 189 (1983).Google Scholar
11. Toyoda, K., Fukuda, N. and Tanaka, S., Rev. Laser Eng. 18, 485 (1990).Google Scholar
12. Kumagai, H., Toyoda, K., Machida, H., and Tanaka, S., Appl. Phys. Lett. 59, 2974 (1991).Google Scholar