Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T14:12:07.484Z Has data issue: false hasContentIssue false

Controlling the Growth Direction of ZnO Nanowires on c-Plane Sapphire

Published online by Cambridge University Press:  21 March 2011

Babak Nikoobakht
Affiliation:
Surface and Microanalysis Science Division, CSTL National Institute of Standards and Technology, Gaithersburg, MD 20899
Get access

Abstract

Well oriented vertical ZnO nanowires (NWs) are grown on c-plane sapphire via a vapor- phase transport process using an Au thin film as a catalyst. This new finding is unexpected due to the fact that the lattice mismatch between the zinc oxide and the underlying substrate is 18%. X- ray diffraction (XRD) analysis shows that single-crystal, wurtzite NWs grow in the [0001] direction normal to the basal sapphire plane, which proves that a-plane sapphire is not essential for growth of vertical ZnO NWs, as has been previously stated.[1] We have found that by controlling the thickness of the Au-film and pre-growth annealing of the Au/sapphire substrate NWs can be grown either tilted or vertical. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) studies on Au films with thicknesses ranging from 1 to 10 nm show that in the absence of film annealing, NWs can be grown 32° tilted from the surface normal, whereas pre-annealed Au films result in growth of NWs in the surface normal direction. We attribute the formation of the normal and tilted growth directions to the surface concentration of O and Al ions on sapphire.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Huang, M. H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., Yang, P., Science 292, 1897 (2001).Google Scholar
2. Vispute, R. D., Talyansky, V., Trajanovic, Z., Choopun, S., Downes, M., Sharma, R.P., Venkatesan, T., Wood, M. C., Lareau, R. T., Jones, K. A., Iliadis, A. A., Appl. Phys. Lett. 70, 2735(1997).Google Scholar
3. Ohkubo, I., Ohtomo, A., Ohnishi, T., Mastumoto, Y., Koinuma, H., Kawasaki, M., Surf. Sci. 443, L1043 (1999).Google Scholar
4. Fons, P., Iwata, K., Yamada, A., Matsubara, K., Niki, S., Nakahara, K., Tanabe, T., Takasu, H., App. Phys. Lett. 77, 1801 (2000).Google Scholar
5. Ng, H. T., Chen, B., Li, J., Han, J., Meyyappan, M., Wu, J., Li, S. X., Haller, E. E., App. Phys. Lett. 82, 2023 (2003).Google Scholar
6. Hu, P., Liu, Y., Wang, X., Fu, L., Zhu, D., Chem. Commun. 1304 (2003).Google Scholar
7. Yoshimoto, M., Maeda, T., Ohnishi, T., Koinuma, H., Ishiyama, O., Shinohara, M., Kubo, M., Miura, R., Miyamoto, A., Appl. Phys. Lett. 67, 2615 (1995).Google Scholar
8. Henrich, V. E., Cox, P. A., The Surface Science of Metal Oxides, (Cambridge University Press, New York, 1994) p. 53.Google Scholar