Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T01:09:21.711Z Has data issue: false hasContentIssue false

Controlling the Sensing Volume of Metal Nanosphere Molecular Sensors

Published online by Cambridge University Press:  15 March 2011

Molly M. Miller
Affiliation:
Mechanical Engineering Materials Science, Duke University, Durham, NC, 27708
Anne A. Lazarides
Affiliation:
Mechanical Engineering Materials Science, Duke University, Durham, NC, 27708
Get access

Extract

Noble metal nanoparticles and nanoshells support surface plasmons at optical frequencies. These resonances, known as localized surface plasmons (LSPs), are sensitive to the dielectric properties of the environment and, in particular, to the refractive index of the material close to the surface of the particle. This sensitivity can be exploited in molecular detection systems that use nanoparticles functionalized with receptors to (a) bind target molecules and (b) optically transduce the resulting change in the dielectric environment. Optimization of an optical nanoparticle sensor involves tailoring the particle to the target so as to maximize the sensitivity of spectroscopic features to the dielectric variation associated with binding of target molecules to the particle surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kerker, M., The Scattering of Light, (Academic, New York, 1969).Google Scholar
2 Jensen, T. R., Duval, M. L., Kelly, K. L., Lazarides, A. A., Schatz, G. C., Duyne, R. P. Van, J. Phys. Chem. B, 103, 98469853 (1999).Google Scholar
3 Jensen, T. R., Malinsky, M. Duval, Haynes, C. L., Duyne, R. P. Van, J. Phys. Chem. B, 104, 10549–56 (2000).Google Scholar
4 Nath, N., Chilkoti, A., Anal. Chem. 74(3), 504509 (2002).Google Scholar
5 Prodan, E., Nordlander, P., Halas, N., Chem. Phys. Lett. 368, 194–101 (2003).Google Scholar
6 Malinsky, M. D., Kelly, K. L., Schatz, G. C., Duyne, R. P. Van, J. Phys. Chem. B, 108, 109116 (2004).Google Scholar
7 Kelly, K. L., Jensen, T. R., Lazarides, A. A., Schatz, G. C., in Metal Nanoparticles, Feldheim, D. L., Foss, C. A. Eds. (Marcel- Dekker, New York, 2001) p. 89118.Google Scholar
8 Chilkoti, A., presented at the 2003 ACS Spring Meeting, New Orleans, LA, 2003 (unpublished).Google Scholar
9 Miller, M., Nath, N., Chilkoti, A., Lazarides, A., in preparation.Google Scholar
10 Aden, A. L. and Kerker, M., J. Appl. Phys. 22, 12421246 (1951).Google Scholar
11 Bohren, C. F. and Huffman, D.R., Absorption and Scattering of Light by Small Particles, (John Wiley & Sons, New York, 1983) p. 483.Google Scholar
12 Miller, M. M., Lazarides, A. A. (unpublished work).Google Scholar
13 Oldenburg, S., Averitt, R. D., Westcott, S., Halas, N. J., Chem. Phys. Lett. 288, 243247 (1998).Google Scholar
14 Averitt, R.D., Westcott, S.L., Halas, N.J., J. Opt. Soc. Am. 16 (10), 1824–32 (1998).Google Scholar