Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-01T13:57:12.489Z Has data issue: false hasContentIssue false

Conversion of Basal Plane Dislocations to Threading Edge Dislocations by High Temperature Annealing of 4H-SiC Epilayers

Published online by Cambridge University Press:  25 May 2012

Xuan Zhang
Affiliation:
Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196, Japan
Hidekazu Tsuchida
Affiliation:
Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196, Japan
Get access

Abstract

Conversion of basal plane dislocations (BPDs) to threading edge dislocations (TEDs) has been observed in 4H-SiC epilayers by simple high temperature annealing. Grazing incidence reflection synchrotron X-ray topography was used to image the dislocations in the epilayers. By comparing the X-ray topographs before and after annealing, some of the BPDs were confirmed to convert to TEDs from the epilayer surface. The dislocation behaviors during annealing are explained and the mechanism of BPD conversion is discussed. It is argued that the conversion process is realized by constricted BPD segments cross-slipping to the prismatic plane driven by the image force and TED glide on its slip plane driven by the line tension. Certain kinetic processes may assist the formation of constrictions on the BPDs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Skowronski, M. and Ha, S., J. Appl. Phys. 99, 011101 (2006).Google Scholar
2. Hassan, J., Bergman, J.P., Henry, A., and Janzén, E., J. Cryst. Growth 310, 4424 (2008).Google Scholar
3. Ha, S., Mieszkowski, P., Skowronski, M., Rowland, L.B., J. Cryst. Growth 244, 257 (2002).Google Scholar
4. Sumakeris, J.J., Jenny, J.R., and Powell, A.R., MRS Bull. 30, 280 (2005).Google Scholar
5. Zhang, Z. and Sudarshan, T.S., Appl. Phys. Lett. 87, 161917 (2005).Google Scholar
6. Song, H., Rana, T., Sudarshan, T.S., J. Cryst. Growth 320, 95 (2011).Google Scholar
7. VanMil, B.L., Stahlbush, R.E., Myers-Ward, R.L., Lew, K.-K., Eddy, C.R. Jr., and Gaskill, D.K., J. Vac. Sci. Technol. B. 26, 1504 (2008).Google Scholar
8. Stahlbush, R.E., VanMil, B.L., Myers-Ward, R.L., Lew, K.-K., Gaskill, D.K., and Eddy, C.R. Jr., Appl. Phys. Lett. 94, 041916 (2009).Google Scholar
9. Tsuchida, H., Kamata, I., Jikimoto, T., and Izumi, K., J. Cryst. Growth 237-239, 1206 (2002).Google Scholar
10. Capano, M.A., Ryu, S., Cooper, J.A. Jr., Melloch, M.R., Rottner, K., Karlsson, S., Nordell, N., Powell, A., and Walker, D.E. Jr., J. Electron. Mater. 28, 214 (1999).Google Scholar
11. Zhang, X., Ha, S., Hanlumnyang, Y., Chou, C.H., Rodriguez, V., Skowronski, M., Sumakeris, J.J., Paisley, M.J., and O’Loughlin, M.J., J. Appl. Phys. 101, 053517 (2007).Google Scholar
12. Kamata, I., Tsuchida, H., Vetter, W.M., and Dudley, M., J. Mater. Res. 22, 845 (2007).Google Scholar
13. Tsuchida, H., Ito, M.. Kamata, I., and Nagano, M., Phys. Status Solidi B 246, 1553 (2009).Google Scholar
14. Hong, M.H., Samant, A.V., and Pirouz, P., Philos. Mag. A 80, 919 (2000).Google Scholar
15. Chung, S., Wheeler, V., Myers-Ward, R.L., Eddy, C.R. Jr., Gaskill, D.K., Wu, P., Picard, Y.N., and Skowronski, M., J. Appl. Phys. 109, 0904906 (2011).Google Scholar
16. Maeda, K., Suzuki, K., Fujita, S., Ichihara, M., and Hyodo, S., Philos. Mag. A 57, 573 (1988).Google Scholar
17. Stroh, A.N., Proc. Phys. Soc. B 67, 427 (1954).Google Scholar
18. Zhang, X., Nagano, M., and Tsuchida, H., accepted by Mater. Sci. Forum.Google Scholar
19. Ning, X., Huvey, N., and Pirouz, P., J. Am. Ceram. Soc. 80, 1645(1997).Google Scholar