Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-14T17:14:14.092Z Has data issue: false hasContentIssue false

Copper Chalcopyrite Film Photocathodes for Direct Solar-Powered Water Splitting

Published online by Cambridge University Press:  26 February 2011

Bjorn Marsen
Affiliation:
marsen@hawaii.edu, University of Hawaii at Manoa, Hawaii Natural Energy Institute, 1680 East-West Road, POST 109, Honolulu, HI, 96822, United States
Susanne Dorn
Affiliation:
sdorn@hawaii.edu, University of Hawaii at Manoa, Hawaii Natural Energy Institute, 1680 East-West Road, Honolulu, HI, 96822, United States
Brian Cole
Affiliation:
bcole@hawaii.edu, University of Hawaii at Manoa, Hawaii Natural Energy Institute, 1680 East-West Road, Honolulu, HI, 96822, United States
Richard E. Rocheleau
Affiliation:
rochelea@hawaii.edu, University of Hawaii at Manoa, Hawaii Natural Energy Institute, 1680 East-West Road, Honolulu, HI, 96822, United States
Eric L. Miller
Affiliation:
ericm@hawaii.edu, University of Hawaii at Manoa, Hawaii Natural Energy Institute, 1680 East-West Road, Honolulu, HI, 96822, United States
Get access

Abstract

In search of an efficient semiconductor material for direct photoelectrochemical (PEC) hydrogen production, chalcopyrite films in the Cu(In,Ga)Se2 system (CIGS) with bandgaps of 1.3-1.65 eV have been evaluated. The films have been fabricated by 2-stage and 3-stage co-evaporation processes. Film samples have been fabricated into CIGS/CdS solar cells for evaluation of solid-state device properties, and into CIGS photocathodes for evaluation of the photoelectrochemical hydrogen-production characteristics. The PEC current-potential scans of the photocathodes in 0.5M sulfuric acid show photocurrents of 18-27 mA/cm2 under simulated AM1.5 global light (100 mA/cm2) at sufficient cathodic potential bias. In terms of fill factor of the photocurrent curves, electrodes with molybdenum back contact are superior to SnO2:F back contact because of better conductivity. The morphology as seen in scanning electron micrographs is unchanged after initial PEC testing in the cathodic regime, suggesting films are stable.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fujishima, A. and Honda, K., Nature 238, 37 (1972).10.1038/238037a0Google Scholar
2. Miller, E. L., Marsen, B., Paluselli, D., and Rocheleau, R., Electrochemical and Solid-State Letters 8, A247 (2005).10.1149/1.1887196Google Scholar
3. Nozik, A. J. and Memming, R., Journal of Physical Chemistry 100, 13061 (1996).10.1021/jp953720eGoogle Scholar
4. Miller, E. L., Marsen, B., Cole, B., and Lum, M., Electrochemical and Solid-State Letters 9, G248 (2006).10.1149/1.2201994Google Scholar
5. Santato, C., Ulmann, M., and Augustynski, J., J. Phys. Chem. B 105, 936940 (2001).10.1021/jp002232qGoogle Scholar
6. Khan, S. U. M., Al-Shahry, M., and Ingler, W. B., Jr., Science 297, 22432245 (2002).10.1126/science.1075035Google Scholar
7. Aroutiounian, V. M., Arakelyan, V. M., Shahnazaryan, G. E., Stepanyan, G. M., Turner, J. A., and Khaselev, O., International Journal of Hydrogen Energy 27, 33 (2002).10.1016/S0360-3199(01)00085-4Google Scholar
8. Shafarman, W. N. and Stolt, L., in Handbook of Photovoltaic Science and Engineering, edited by A., Luque and Hegedus, S. S. (Wiley, 2003), p. 567616.Google Scholar
9. Contreras, M. A., Ramanathan, K., AbuShama, J., Hasoon, F., Young, D., Egaas, B., and Noufi, R., Progress in Photovoltaics: Research and Applications 13, 209216 (2005).Google Scholar
10. Robbins, M., Bachmann, K. J., Lambrechr, V. G., Thiel, F. A., Thomson, J., Vadimsky, R. G., Menezes, S., Heller, A., and Miller, B., Journal of The Electrochemical Society 125, 831832 (1978).10.1149/1.2131560Google Scholar
11. Mirovsky, Y., Cahen, D., Hodes, G., Tenne, R., and Giriat, W., Solar Energy Materials 4, 169177 (1981).10.1016/0165-1633(81)90040-XGoogle Scholar
12. Cahen, D. and Chen, Y.-W., Applied Physics Letters 45, 746 (1984).10.1063/1.95384Google Scholar
13. Menezes, S., Lewerenz, H.-J., and Bachmann, K. J., Nature 305, 615616 (1983).10.1038/305615a0Google Scholar
14. Menezes, S., Applied Physics Letters 45, 148149 (1984).10.1063/1.95148Google Scholar
15. Chen, Y. W., Cahen, D., Noufi, R., and Turner, J. A., Solar Cells 14, 109 (1985).10.1016/0379-6787(85)90033-XGoogle Scholar
16. Kessler, J., Lincot, D., Vedel, J., Dimmler, B., and Schock, H. W., Solar Cells 29, 267 (1990).10.1016/0379-6787(90)90001-LGoogle Scholar
17. Kisilev, A., Marcu, V., Cahen, D., Schock, H. W., and Noufi, R., Solar Cells 28, 5767 (1990).10.1016/0379-6787(90)90038-7Google Scholar
18. Lincot, D., Meier, H. Gomez, Kessler, J., Vedel, J., Dimmler, B., and Schock, H. W., Solar Energy Materials 20, 67 (1990).10.1016/0165-1633(90)90018-VGoogle Scholar
19. Siripala, W., Vedel, J., Lincot, D., and Cahen, D., Applied Physics Letters 62, 519 (1993).10.1063/1.108898Google Scholar
20. Clolus, E., Galtayries, A., Canava, B., Guillemoles, J. F., and Lincot, D., (Mater. Res. Soc. Proc. 668, San Francisco, CA, 2001), pp. 971976.Google Scholar
21. Leisch, J., Dissertation Thesis, Colorado School of Mines, (2006).Google Scholar
22. Leisch, J., Abushama, J., and Turner, J. A., ECS Meeting Abstracts 502, 821–821 (2006).Google Scholar
23. Fernandez-Valverde, S., Ordonez-Regil, E., Valencia-Alvarado, R., Rivera-Noriega, R., and Solorza-Feria, O., International Journal of Hydrogen Energy 22, 581584 (1997).10.1016/S0360-3199(96)00196-6Google Scholar
24. Alanis, A. Lopez, Garcia, J. R. Vargas, Rivera, R., and Valverde, S. M. Fernandez, International Journal of Hydrogen Energy 27, 143147 (2002).Google Scholar
25. Martinez, A. M., Arriaga, L. G., Fernandez, A. M., and Cano, U., Materials Chemistry and Physics 88, 417420 (2004).Google Scholar
26. Valderrama, R. C., Sebastian, P. J., Miranda-Hernandez, M., Enriquez, J. P., and Gamboa, S. A., Journal of Photochemistry and Photobiology A: Chemistry 168, 7580 (2004).10.1016/j.jphotochem.2004.04.006Google Scholar
27. Fernandez, A. M., Dheree, N., Turner, J. A., Martinez, A. M., Arriaga, L. G., and Cano, U., Solar Energy Materials and Solar Cells 85, 251259 (2005).10.1016/j.solmat.2004.03.006Google Scholar
28. Valderrama, R. C., Sebastian, P. J., Enriquez, J. Pantoja, and Gamboa, S. A., Solar Energy Materials and Solar Cells 88, 145 (2005).Google Scholar
29. Liao, D. and Rockett, A., Journal of Applied Physics 91, 19781983 (2002).10.1063/1.1434549Google Scholar
30. Contreras, M. A., Egaas, B., King, D., Swartzlander, A., and Dullweber, T., Thin Solid Films 361–362, 167171 (2000).10.1016/S0040-6090(99)00778-6Google Scholar
31. Wei, S.-H. and Zunger, A., Journal of Applied Physics 78, 38463856 (1995).10.1063/1.359901Google Scholar
32. Nakada, T., Thin Solid Films 480–481, 419 (2005).10.1016/j.tsf.2004.11.142Google Scholar
33. Cahen, D. and Mirovsky, Y., Journal of Physical Chemistry 89, 28182827 (1985).Google Scholar