Published online by Cambridge University Press: 24 March 2011
Scratch testing, as a mature technique for coating adhesion quantification, has been widely adopted by both industrial and academic fields in recent years. Following the urgent needs of very small materials characterization, nano-scratch testing has gradually replaced the traditional pull-off test for the study of ultra-thin film properties. In this research, the relationship between the adhesion strength and film/substrate mechanical properties was investigated to provide fundamental but crucial knowledge of the scratch mechanism. Scratch tests were performed on different film/substrate combinations using a Nano Scratch Tester with a sphero-conical diamond indenter. A progressive load mode was employed to cause coating failure during scratch on the film surface. The critical values of different failure mechanisms, such as cracking and delamination were accurately determined according to the scratch panorama image, penetration and residual depth data. In addition, the hardness (H) and modulus (E) values of the thin films and substrates were measured with an Ultra Nanoindentation Tester. The scratch critical failure loads were then plotted versus film/substrate H and E ratios. A unique relationship was found between these parameters that could help understand the true mechanism behind scratch adhesion and leverage this methodology to a new theoretical level.