Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-14T08:12:24.638Z Has data issue: false hasContentIssue false

Correlation between Filament Distribution and Resistive Switching Property in Binary-Transition-Metal-Oxide Based Resistive Random Access Memory.

Published online by Cambridge University Press:  18 May 2012

H. Tanaka
Affiliation:
Department of Information and Electronics, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan.
K. Kinoshita
Affiliation:
Department of Information and Electronics, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan. Tottori Univ. Electronic Display Research Center, 522-2 Koyama-Kita, Tottori 680-0941, Japan.
M. Yoshihara
Affiliation:
Department of Information and Electronics, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan.
S. Kishida
Affiliation:
Department of Information and Electronics, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan. Tottori Univ. Electronic Display Research Center, 522-2 Koyama-Kita, Tottori 680-0941, Japan.
Get access

Abstract

Large variation in basic memory properties is a serious issue that hinders the practical use of ReRAM. This study revealed that one of the main factors causing variation is the presence of multiple filaments which have distinct set voltages in each memory cell. An operating filament switches to another filament having the smallest set voltage at each instant of switching. We propose a resistive switching model that takes the presence of multiple filaments into consideration. A Monte Carlo simulation based on the resistive switching model reproduces the set voltage distribution. Improvement of accuracy of the simulation can be also expected considering the fact that Vset increases at a certain probability at each instant of set switching.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tsunoda, K., Kinoshita, K., Noshiro, H., Yamazaki, Y., Iizuka, T., Ito, Y., Takahashi, A., Okano, A., Sato, Y., Fukano, T., Aoki, M., and Sugiyama, Y., Tech. Dig. Int. Electron Devices Meet. 2007, 767.Google Scholar
2. Gao, B., Zhang, H. W., Yu, S., Sun, B., Liu, L. F., Liu, X. Y., Wang, Y., Han, R. Q., Kang, J. F., Yu, B., and Wang, Y. Y., Symposium on VLSI Technology Digest of Technical Papers. 2009, 30.Google Scholar
3. Kinoshita, K., Tsunoda, K., Sato, Y., Noshiro, H., Yagaki, S., Aoki, M., and Sugiyama, Y., Appl. Phys. Lett. 93, 033506 (2008).Google Scholar
4. Liu, M., Abid, Z., Wang, W., He, X., Liu, Q., and Guan, W., Appl. Phys. Lett. 94, 233106 (2009).Google Scholar
5. Kim, D. C., Seo, S., Ahn, S. E., Suh, D.-S., Lee, M. J., Park, B.-H., and Yoo, I. K., Appl. Phys. Lett. 88, 202102 (2006).Google Scholar
6. Lee, H. Y., Chen, Y. S., Chen, P. S., Gu, P. Y., Hsu, Y. Y., Wang, S. M., Liu, W. H., Tsai, C. H., Sheu, S. S., Chiang, P. C., Lin, W. P., Lin, C. H., Chen, W. S., Chen, F. T., Lien, C. H., and Tsai, M.-J., Tech. Dig. Int. Electron Devices Meet. 2010, 460.Google Scholar
7. Ahn, S.-E., Lee, M.-J., Park, Y., Kang, B. S., Lee, C. B., Kim, K. H., Seo, S., Suh, D.-S., Kim, D.-C., Hur, J., Xianyu, W., Stefanovich, G., Yin, H., Yoo, I.-K., Lee, J.-H., Park, J.-B., Baek, I.-G., and Park, B. H., Adv. Mater. 20, 924 (2008).Google Scholar
8. Lee, S. B., Chae, S. C., Chang, S. H., Lee, J. S., Seo, S., Kahng, B., and Noh, T. W., Appl. Phys. Lett. 93, 212105 (2008).Google Scholar
9. Nardi, F., Ielmini, D., Cagli, C., Spiga, S., Fanciulli, M., Goux, L., and Wouters, D. J., Solid-State Electron. 58, 42 (2011).Google Scholar
10. Yoda, T., Kinoshia, K., Makino, T., Dobashi, K., and Kishida, S., Phys. Status Solidi c 8, 546 (2011).Google Scholar
11. Menk, G. E., Desu, S. B., Pan, W., and Vijay, D. P., Mat. Res. Soc. Symp. Proc. 433, 189 (1996).Google Scholar
12. Hashimoto, S., Hirokawa, K., Fukuda, Y., Suzuki, K., Suzuki, T., Usuki, N., Gennai, N., Yoshida, S., Koda, M., Sezaki, H., Horie, H., Tanaka, A., and Ohtsubo, T., Surf. Interface Anal. 18, 799 (1992).Google Scholar
13. Kim, K.S. and Winograd, N., Surf. Sci. 43, 625 (1974).Google Scholar
14. Degraeve, R., Groeseneken, G., Bellens, R., Depas, M., and Maes, H. E., Tech. Dig. Int. Electron Devices Meet. 1995, 863.Google Scholar
15. Seo, S., Lee, M. J., Seo, D. H., Choi, S. K., Suh, D.-S., Joung, Y. S., Yoo, I. K., Byun, I. S., Hwang, I. R., Kim, S. H., and Parka, B. H., Appl. Phys. Lett. 86, 093509 (2005).Google Scholar
16. Xu, N., Liu, L., Sun, X., , X. L., Han, D., Wang, Y., Han, R., Kang, J., and Yu, B., Appl. Phys. Lett. 92, 232112 (2008).Google Scholar
17. Shima, H., Takano, F., Akinaga, H., Tamai, Y., Inoue, I. H., and Takagi, H., Appl. Phys. Lett. 91, 012901 (2007).Google Scholar
18. Box, G. and Muller, M., Ann. Math. Stat. 29, No. 2 610 (1958).Google Scholar