No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
The impact of two implant parameters, namely the implant substrate temperature and implant beam current, on the physical and electrical properties of SIMOX buried oxide are investigated. Three implant substrate temperatures, 540 °C, 590 °C, and 640 °C and three beam current, 45 mA, 55 mA, 65 mA, are investigated. Results from thermal conductivity and surface photovoltage measurements show no apparent differences between samples. Results from interface roughness shows a decreasing trend as the substrate temperature and beam current increases. For the samples with different implant temperatures, the high‐field conduction shows an opposite dependence for top‐interface versus substrate injection. This behavior can be explained by the conservation of silicon in the buried oxide. Correlation of surface photovoltage and high‐field conduction shows weak positive dependency while that of interface roughness and high‐field conduction shows dependency only when the sets of temperature variation and beam current variation are decoupled.