Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-13T02:06:44.690Z Has data issue: false hasContentIssue false

Correlation of Formation Enthalpies with Critical Amorphization Temperature for Pyrochlore and Monazite

Published online by Cambridge University Press:  17 March 2011

K.B. Helean
Affiliation:
Thermochemistry Facility and NEAT-ORU, The University of California at Davis, Davis CA 95616
A. Navrotsky
Affiliation:
Thermochemistry Facility and NEAT-ORU, The University of California at Davis, Davis CA 95616, anavrotsky@ucdavis.edu
J. Lian
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, The University of Michigan, Ann Arbor MI 48109
R.C. Ewing
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, The University of Michigan, Ann Arbor MI 48109
Get access

Abstract

Systematic studies of a series of RE-titanate pyrochlore single crystals determined the formation enthalpies, ΔH0f-ox, and the critical amorphization temperature, Tc, the temperature above which the crystal can no longer be amorphized. A negative linear correlation was observed between ΔH0f-ox and Tc. In general as the cation radius ratio, RA/RB, decreases the formation enthalpy becomes less exothermic, i.e. the pyrochlore structure becomes less thermodynamically stable while the susceptibilty to ion beam-induced amorphization decreases. The opposite relation, i.e. a positive linear correlation between ΔH0f-ox and Tc was observed for a series of REPO4 single crystals with both the monazite and xenotime structures. Both relations can be understood in terms of pyrochlore and orthophosphate crystal chemistry, their formation of point defects, and the role of ion-irradiation induced phase transformations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Wuensch, B. J., Eberman, K. W., JOM –J Min Met. Mat. Soc., 52, 19 (2000).Google Scholar
[2] Moon, P. K., Tuller, H. L., Solid State Ionics, 28–30, 470 (1988).Google Scholar
[3] Williford, R. E., Weber, W. J., Devanathan, R., Gale, J. D., J. Electroceram., 3, 409 (1999).Google Scholar
[4] Wilde, P. J., Catlow, C. R. A., Solid State Ionics, 112, 173 (1998).Google Scholar
[5] Wilde, P. J., Catlow, C. R. A., Solid State Ionics, 112, 185 (1998).Google Scholar
[6] Christopher, J., Swamy, C. S., J. Mat. Sci., 26(18), 4966 (1991).Google Scholar
[7] Lee, J. H., Chiang, Y. M., J. Electroceram., 6(1), 7 (2001).Google Scholar
[8] Cava, R. J., J. Mater. Chem., 11(1), 54 (2001).Google Scholar
[9] Wojtowicz, A. J., Wisniewski, D., Lempicki, A. and Boatner, L. A., Rad. Effect. Def. Solids, 135 (1995).Google Scholar
[10] Wojtowicz, A. J., Wisniewski, D., Lempicki, A. and Boatner, L. A. in Scintillation and Phosphor Materials, eds. Weber, M. J., Lecoq, P., Ruchti, R. C., Woody, C., Yen, W. M., Zhu, R-Y., Mat. Res. Soc. Symp. Proc., 348, 123 (1994).Google Scholar
[11] Lempicki, A., Berman, E., Wojtowicz, A. J., Balcerzyk, M., Boatner, L. A., IEEE Trans. Nucl. Sci., 40, 384 (1993).Google Scholar
[12] Allison, S. W., Boatner, L. A., Gillies, G. T., Appl. Opt., 25, 5624 (1995).Google Scholar
[13] Rapaport, A., David, V., Bass, M., Deka, C., Boatner, L. A., J. Lumin., 85, 155 (1999).Google Scholar
[14] Rapaport, A., Moteau, O., Bass, M., Boatner, L. A., Deka, C., J. Opt. Soc. Amer., B 16, 911 (1999).Google Scholar
[15] Jarosewich, E., Boatner, L. A., Geostds. Newsletter, 15, 397 (1991).Google Scholar
[16] Lumpkin, G. R., Foltyn, E. M., Ewing, R. C., J. Nucl. Mater., 129, 113 (1986).Google Scholar
[17] Lumpkin, G. R., Eyal, Y., Ewing, R. C., J. Mater. Res., 3(2), 357 (1988).Google Scholar
[18] Lumpkin, G. R., Ewing, R. C., Amer. Mineral., 118, 393 (1992).Google Scholar
[19] Boatner, L. A., Sales, B. C. in Radioactive Waste Forms for the Future, eds. Lutze, W., Ewing, R. C., Elsevier, Amsterdam (1988) 495.Google Scholar
[20] Lumpkin, G. R., J. Nucl. Mater., 289, 136 (2001).Google Scholar
[21] Meldrum, A., Boatner, L. A., Ewing, R. C., Phys. Rev. B, 56(21), 13805 (1997).Google Scholar
[22] Chakoumakos, B. C., Ewing, R. C., Mater. Res. Soc. Symp. Proc., 44, 641 (1985).Google Scholar
[23] Ringwood, A. E., Kesson, S. E., Ware, N. G., Hibberson, W., Major, A., Nature, 278, 219 (1979).Google Scholar
[24] Lumpkin, G. R., Ewing, R. C., Phys. Chem. Mineral., 16, 2 (1988).Google Scholar
[25] Ewing, R. C., Science, 192, 1336 (1976).Google Scholar
[26] Jostons, A., Vance, E. R., Mercer, D. J., Oversby, V. M., Mater. Res, Soc. Symp. Proc., 53, 775 (1995).Google Scholar
[27] Ewing, R. C., Weber, W. J., Lian, J., J. Appl. Phys., 95(11), 5949 (2004).Google Scholar
[28] Chakoumakos, B. C., J. Solid State Chem., 53, 120 (1984).Google Scholar
[29] Subramanian, M. A., Aravamudan, G., Rao, G. V. S., Prog Solid State Chem., 15, 55 (1983).Google Scholar
[30] International Tables for Crystallography, vol. 1A.Google Scholar
[31] Ni, Y., Hughes, J. M., Mariano, A. N., Amer. Min., 80, 21 (1995).Google Scholar
[32] Kizilyalli, M., Welch, A. J. E., J. Appl. Crystal., 9, 413 (1976).Google Scholar
[33] Inoue, M., Nakamura, T., Otsu, H., Kominami, H., Inue, T., Nipon Kagaku Kaishi, 5, 612 (1993).Google Scholar
[34] Hikichi, V., Yu, C. F., Miyamoto, V., Okada, S., J. Alloys Cmpd., 192, 102 (1993).Google Scholar
[35] Lian, J., Chen, J., Wang, L. M., Ewing, R. C., Farmer, J. M., Boatner, L. A., Helean, K. B., Phys. Rev. B., 68(13), 134107/1 (2003).Google Scholar
[36] Helean, K. B., Ushakov, S. V., Farmer, J. M., Lian, J., Navrotsky, A., Ewing, R. C., Boatner, L. A., J. Solid State Chem., 177(6), 1858 (2004).Google Scholar
[37] Heremans, C., Wuensch, B. J., Wuensch, J. K., Staik, J. K., Prince, E., J. Solid State Chem., 117, 108 (1995).Google Scholar
[38] Wang, S. X., Wang, L. M., Ewing, R. C., Was, G. S., Lumpkin, G. R., Nucl. Instr. Meth. B, 148, 704 (1999).Google Scholar
[39] Wang, S. X., Begg, B. G., Wang, L. M., Ewing, R. C., Weber, W. J., Kutty, K. V. G., J. Mater. Res., 14, 4470 (1999).Google Scholar
[40] Sickafus, K. E., Minervini, L., Grimes, R. W., Valdez, J. A., Ishimaru, M., Li, F., McClellan, K. J., Hartmann, T., Science, 289, 748 (2000).Google Scholar
[41] Minervini, L., Grimes, R. W., Sickafus, K. E., J. Amer. Ceram. Soc., 83, 1873 (2000).Google Scholar
[42] Williford, R. E., Weber, W. J., Devanathan, R., Gale, J. D., J. Electroceram., 3, 409 (1999).Google Scholar
[43] Charties, A., Meis, C., Weber, W. J., Corrales, L. R., Phys. Rev. B., 65, 134116 (2002).Google Scholar
[44] Ushakov, S. V., Helean, K. B., Navrotsky, A., Boatner, L. A., J. Mater. Res., 16(9), 2623 (2001).Google Scholar
[45] Weber, W. J., Ewing, R. C., Wang, L. M., J. Mat. Res., 9, 688 (1994).Google Scholar
[46] Weber, W. J., Wang, L. M., Nucl. Instr. Meth. Phys. Res. B, 91, 63 (1994).Google Scholar
[47] Morehead, F. F. Jr, Crowder, B. L., Rad. Effect., 6, 27 (1970).Google Scholar
[48] Nastasi, M., Mayer, J. W., Mat. Sci. Reports, 6, 1 (1991).Google Scholar