Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T08:44:26.427Z Has data issue: false hasContentIssue false

Cosegregation-Induced Epitaxial Growth of Two- and Three-Dimensional Compounds on Multicomponent Alloy Surfaces

Published online by Cambridge University Press:  10 February 2011

E. Clauberg
Affiliation:
Max-Planck-Institut für Eisenforschung, Department of Physical Chemistry, D-40074 Düsseldorf, Germany
A. Dziakova
Affiliation:
Max-Planck-Institut für Eisenforschung, Department of Physical Chemistry, D-40074 Düsseldorf, Germany
B. Eltester
Affiliation:
Max-Planck-Institut für Eisenforschung, Department of Physical Chemistry, D-40074 Düsseldorf, Germany
L. Hammer
Affiliation:
Lehrstuhl für Festkörperphysik, Universitäit Erlangen-Nürnberg, D-910.58 Erlangen, Germany
B. Hüning
Affiliation:
Max-Planck-Institut für Eisenforschung, Department of Physical Chemistry, D-40074 Düsseldorf, Germany
M. Kottcke
Affiliation:
Lehrstuhl für Festkörperphysik, Universitäit Erlangen-Nürnberg, D-910.58 Erlangen, Germany
C. Müller
Affiliation:
Lehrstuhl für Festkörperphysik, Universitäit Erlangen-Nürnberg, D-910.58 Erlangen, Germany
C. Rath
Affiliation:
Lehrstuhl für Festkörperphysik, Universitäit Erlangen-Nürnberg, D-910.58 Erlangen, Germany
C. Uebing
Affiliation:
Max-Planck-Institut für Eisenforschung, Department of Physical Chemistry, D-40074 Düsseldorf, Germany
K. Heinz
Affiliation:
Lehrstuhl für Festkörperphysik, Universitäit Erlangen-Nürnberg, D-910.58 Erlangen, Germany
Get access

Abstract

In this contribution the cosegregation-induced epitaxial growth of two- and three-dimensional chromium nitrides on ferritic Fe-15%Cr-N(100) (CN = 30 wt-ppm) single crystal surfaces will be discussed. The two-dimensional CrN surface compound is stable between 600 and 720°C. From the (1 × 1) LEED pattern it is inferred that the surface compound is epitaxial to the bcc(100) alloy surface. XPD and LEED-IV investigations have revealed that this surface compound consists of a single CrN compound layer plus an additional subsurface chromium layer with a huge interlayer expansion between both layers. The CrN surface precipitate formed at temperatures T < 600°C is also epitaxially arranged on the bcc(100) substrate surface. Its structure corresponds to the rocksalt structure, i.e. the structure of the well-known bulk CrN. Starting from a sputter cleaned alloy surface the growth of the epitaxial CrN surface precipitate proceeds via the two-dimensional CrN surface nitride. After completion of this two-dimensional CrN layer the nucleation and growth of the three-dimensional CrN surface precipitate takes place.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Uebing, C., Heterogeneous Chemistry Reviews 3, 351 (1996).Google Scholar
2. Guttmann, M. and McLean, D. in Interfacial Segregation, edited by Johnson, W.C. and Blakely, J.M. (American Society for Metals, Metals Park, 1977).Google Scholar
3. Guttmann, M., Metall. Trans. A 8, 1383 (1977).Google Scholar
4. Guttmann, M., Surf. Sci. 53, 213 (1975).Google Scholar
5. Guttmann, M., Krahe, P.R., Abel, F., Amsel, G., Bruneaux, M., and Cohen, C., Metall. Trans. 5, 167 (1974).Google Scholar
6. Dumoulin, P. and Guttmann, M., Mater. Sci. Eng. 42, 249 (1980).Google Scholar
7. Guttmann, M., Mater. Sci. Eng. 42, 277 (1980).Google Scholar
8. Viefhaus, H., Peters, J., and Grabke, H.J., Surf. Interface Anal. 10, 280 (1987).Google Scholar
9. Uebing, C. and Viefhaus, H., Surf. Sci. 236, 29 (1990).Google Scholar
10. Uebing, C., Viefhaus, H., and Grabke, H.J., Surf. Sci. 264, 114 (1992).Google Scholar
11. Uebing, C., Bunsenges, Ber.. Phys. Chem. 99, 951 (1995).Google Scholar
12. Hille, V., Viljoen, E.C., and Uebing, C., Surf. Sci. Lett. 367, L54 (1996).Google Scholar
13. Uebing, C., Scheuch, V., Kiskinova, M., and Bonzel, H.P., Surf. Sci 321, 89 (1994).Google Scholar
14. Uebing, C., Scheuch, V., Kiskinova, M., and Bonzel, H.P., Surface Reviews and Letters 3, 1721 (1996).Google Scholar
15. Scheuch, V., Kiskinova, M., Bonzel, H.P., and Uebing, C., Phys. Rev. B 51, 1973 (1995).Google Scholar
16. Miller, Ch., Uebing, C., Kottcke, M., Rath, Ch., Hammer, L., and Heinz, K. Surf. Sci., in print.Google Scholar
17. Hove, M.A. Van and Tong, S.Y., Surface Crystallography by LEED, (Springer, Berlin, 1979).Google Scholar
18. Rous, P.J., Pendry, J.B., Saldin, D.K., Heinz, K., Müller, K. and Bickel, N., Phys. Rev. Lett. 57, 2951 (1986)Google Scholar
19. Rous, P.J., Progr. Surf. Sci. 39, 3 (1992)Google Scholar
20. Heinz, K., Rep. Progr. Phys. 58, 637 (1995)Google Scholar
21. Döll, R., Kottcke, M. and Heinz, K., Phys. Rev. B 48, 1973 (1993)Google Scholar
22. Heinz, K., Kottcke, M., Löffler, U. and Döll, R., Surf. Sci. 357–358, 1 (1996)Google Scholar
23. Heinz, K., Döll, R. and Kottcke, M., Surf. Rev. & Lett. 3, 1651 (1996)Google Scholar
24. Löffler, U., Döll, R., Heinz, K. and Pendry, J.B., Surf. Sci. 301, 346 (1994)Google Scholar
25. Kottcke, M. and Heinz, K., Surf. Sci. 376, 352 (1997)Google Scholar
26. Joly, Y., Gauthier, Y., and Baudoing, R., Phys. Rev. B 40, 10119 (1989).Google Scholar
27. Scheurer, F., Ohresser, P., Carrière, B., Deville, J.P., Baudoing-Savois, R., and Gauthier, Y., Surf. Sci. 298, 107 (1993).Google Scholar