Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T01:18:11.272Z Has data issue: false hasContentIssue false

Covalent Silicon Bonding At Room Temperature In Ultrahigh Vacuum

Published online by Cambridge University Press:  10 February 2011

Andreas Plöbl
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06 120 Halle (Saale), Germany
Heinz Stenzel
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06 120 Halle (Saale), Germany
Qin-Yi Tong
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06 120 Halle (Saale), Germany
Martin Langenkamp
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06 120 Halle (Saale), Germany
Cord Schmidthals
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06 120 Halle (Saale), Germany
Ulrich Gösele
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06 120 Halle (Saale), Germany
Get access

Abstract

One possibility of a low temperature joining techniques relies on the bonding of atomically clean surfaces. Results on the application of this method to silicon direct bonding are being presented. Clean surfaces for bonding were prepared by ex situ chemical cleaning with ensuing hydrogen passivation and their subsequent activation by thermal desorption of the hydrogen in ultrahigh vacuum (UHV). In UHV at room temperature, the wafers were gently brought into contact to initiate the bonding process. Without any subsequent heat treatment, the adhesive strength thus achieved was equivalent to the cohesion of bulk silicon: covalent bonds join the two crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kräuter, G., Schumacher, A., Gösele, U., Jaworek, T., and Wegner, G., Adv. Mater. 9, 417 (1997).Google Scholar
2. Jaccodine, R. J., J. Electrochem. Soc. 110, 524 (1963).Google Scholar
3. Conrad, D., Scheerschmidt, K., and Gösele, U., Appl. Phys. A 62, 7 (1996).10.1007/BF01568080Google Scholar
4. Nelson, J. S., Dodson, B. W., and Taylor, P. A., Phys. Rev. B 45, 4439 (1992).10.1103/PhysRevB.45.4439Google Scholar
5. Gösele, U., Stenzel, H., Martini, T., Steinkirchner, J., Conrad, D., and Scheerschmidt, K., Appl. Phys. Lett. 67, 3614 (1995).Google Scholar
6. Chung, T. R., Yang, L, Hosoda, N., Takagi, H., and Suga, T., Appl. Surf. Sci. 117/118, 808 (1997).Google Scholar
7. K Hobart, D., Desmond, C. A., Kub, F. J., Twigg, M. E., and Jernigan, G. G., Proc. Fourth Int. Symp. Semiconductor Wafer Bonding, to be published.Google Scholar
8. Plößl, A., Scholz, R., Stenzel, H, Richter, U., and Schmidthals, C., Proc. Fourth Int. Symp. Semiconductor Wafer Bonding, to be published.Google Scholar
9. Kern, W. (ed.), Handbook of Semiconductor Wafer Cleaning Technology, (Noyes Publications, Park Ridge, New Jersey, U. S. A.).Google Scholar
10. Chabal, Y. J, Higashi, G. S., and Raghavachari, K., J. Vac. Sci. Technology A 7, 2104 (1989).Google Scholar
11. Stengl, R., Aln, K.-Y., and Gösele, U., Jpn. J. Appl. Phys. 27, L2364 (1988).10.1143/JJAP.27.L2364Google Scholar
12. Lehmann, V., Gösele, U., and Mitani, K., Solid State Technology 33, 91 (1990).Google Scholar
13. Schulze, G., and Henzler, M., Surf. Sci., 124, 336 (1983).Google Scholar
14. Tong, Q.-Y., Schmidt, E., Gösele, U., and Reiche, M., Appl. Phys. Lett. 64, 625 (1994).Google Scholar
15. Breitenstein, O., Eberhardt, W., and Iwig, K., Proc. First World Conf. Photovolt. Energy Conversion, 1633 (1994).Google Scholar
16. Breitenstein, O., Iwig, K., and Konovalov, I., phys. stat. sol. a 160, 271 (1997).Google Scholar
17. Hirose, F., and Sakamoto, H., Appl. Surf. Sci. 75, 87 (1994).Google Scholar
18. Akazawa, H., Phys. Rev. B 54, 10917 (1996).Google Scholar