Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T04:26:11.805Z Has data issue: false hasContentIssue false

Covalently interconnected and separated vanadosilicate shells

Published online by Cambridge University Press:  26 January 2011

Xiqu Wang
Affiliation:
Department of Chemistry, University of Houston, Houston, TX 77204-5003
Lumei Liu
Affiliation:
Department of Chemistry, University of Houston, Houston, TX 77204-5003
Allan J. Jacobson
Affiliation:
Department of Chemistry, University of Houston, Houston, TX 77204-5003
Get access

Abstract

Four new compounds containing vanadosilicate clusters have been synthesized by hydrothermal reactions. The clusters are derived from the [V18O42] Keggin cluster by substitution of V=O caps by Si2O(O,OH)2 species. In Cs9[(V15Si6O46(OH)2Cl)(V2O4)](H2O)6.2, 1, the [V15Si6O46(OH)2] cluster shells are covalently interconnected by VO4 tetrahedra to form an infinite layer. In ((CH3)4N)4[V15Si6O42(OH)6(H2O)](H2O)20, 2, and ((CH3)4N)4(V(H2O)6)2/3 [V15Si6O42(OH)6 (H2O)](H2O), 3, separated [V15Si6O42(OH)6] cluster shells are interlinked by hydrogen bonds to form frameworks with wide channel systems. The separated cluster shell in ((CH3)4N)4((CH3)2NH2)((CH3)2NH) [V14Si8O42(OH)8(HCO2)] (H2O)4.7, 4, has four Si2O(OH)2 species in a tetrahedral configuration. The 2D structure of 1 and 0D structures of 2-4 complement the known 1D and 3D structures formed from such vanadosilicate shells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pope, M. T., Compr. Coord. Chem. II 4, 635 (2004).Google Scholar
2. Hill, C. L. and White, G. C., Chem. Rev. 98, 1 (1998).Google Scholar
3. Kong, X.-J., Long, L.-S., Zheng, Z., Huang, R.-B., and Zheng, L.-S., Acc. Chem. Res. 43, 201 (2009).Google Scholar
4. Long, D.-L., Tsunashima, R., and Cronin, L., Angew. Chem., Int. Ed. 49, 1736 (2010).Google Scholar
5. Khan, M. I., Yohannes, E., and Doedens, R. J., Angew. Chem., Int. Ed. 38, 1292 (1999).Google Scholar
6. Khan, M. I., J. Solid State Chem. 152, 105 (2000).Google Scholar
7. Mizuno, N., Uchida, S., and Uehara, K., Pure Appl. Chem. 81, 2369 (2009).Google Scholar
8. Dolbecq, A., Dumas, E., Mayer, C. R., and Mialane, P., Chem. Rev. 110, 6009 (2010).Google Scholar
9. Whitfield, T., Wang, X., and Jacobson, A. J., Inorg. Chem. 42, 3728 (2003).Google Scholar
10. Wang, X., Liu, L., Zhang, G., and Jacobson, A. J., Chem. Commun., 2472 (2001).Google Scholar
11. Tripathi, A., Hughbanks, T., and Clearfield, A., J. Am. Chem. Soc. 125, 10528 (2003).Google Scholar
12. Janjua, M. R. S. A., Su, Z.-M., Guan, W., Irfan, A., Muhammad, S., and Iqbal, M., Can. J. Chem. 88, 434 (2010).Google Scholar
13. Mueller, A., Sessoli, R., Krickemeyer, E., Boegge, H., Meyer, J., Gatteschi, D., Pardi, L., Westphal, J., Hovemeier, K., Rohlfing, R., Doering, J., Hellweg, F., Beugholt, C., and Schmidtmann, M., Inorg. Chem. 36, 5239 (1997).Google Scholar
14. Hammer, V. M. F., Libowitzky, E., and Rossman, G. R., Am. Mineral. 83, 569 (1998).Google Scholar
15. Kahrovic, E., Orioli, P., Bruni, B., Di Vaira, M., and Messori, L., Inorg. Chim. Acta 355, 420 (2003).Google Scholar