Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-02T18:47:45.929Z Has data issue: false hasContentIssue false

Cross-plane thermal conductivity temperature dependence for PbSnSe/PbSe thin film superlattice material from 100K to 300K

Published online by Cambridge University Press:  19 April 2013

James D. Jeffers
Affiliation:
School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019
Leonard Olona
Affiliation:
School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019
Zhihua Cai
Affiliation:
School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019
Khosrow Namjou
Affiliation:
School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019
Patrick J. McCann
Affiliation:
School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019
Get access

Abstract

The temperature dependence of cross-plane lattice thermal conductivity for thin film IV-VI semiconductors grown by molecular beam epitaxy was measured. Samples consisting of PbSe/PbSrSe multiple quantum wells (MQWs) on PbSe/PbSnSe superlattices (SLs) were grown with variations in SL layer thickness and the number of SL pairs. Localized lattice temperatures within the MQW layers were extracted from analysis of continuous wave photoluminescence (PL) emission spectra at heat sink temperatures between 100 K and 250 K. These data, finite element analysis, and electrical characterization were used to determine cross-plane lattice thermal conductivity of two different SL materials. A SL material with three different PbSe/PbSnSe thicknesses (1.2/1.2, 1.8/1.8, and 2.4/2.4 nm) exhibited a fairly constant lattice thermal conductivity from 1.2 to 1.3 W/mK as the sample was cooled from 250 K to 100 K. Another SL material with five different PbSe/PbSnSe thicknesses (0.5/0.5, 1.0/1.0, 1.6/1.6, 2.1/2.1, and 2.6/2.6 nm) exhibited very low lattice thermal conductivities from 0.46 to 0.47 W/mK 250 K to 100 K. These results are consistent with reflection of low energy heat transporting acoustic phonons within the SL material.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Taylor, J. C., Coonley, K., Stuart, J., Colpitts, T., and Venkatasubramanian, R., Appl. Phys. Lett. 87, 2, (2005).Google Scholar
Heremans, J. P., Thrush, C. M., and Morelli, D. T., J. Appl. Phys. 98, 063703 (2005).10.1063/1.2037209CrossRefGoogle Scholar
Capinski, W. S., Maris, H. J., Ruf, T., Cardona, M., Ploog, K., and Katzer, D. S., Phys. Rev. B 59, 81058113 (1999).10.1103/PhysRevB.59.8105CrossRefGoogle Scholar
Ezzahri, Y., Grauby, S., Rampnoux, J. M., Michel, H., Pernot, G., Claeys, W., and Dilhaire, S., Rossignol, C., Zeng, G. and Shakouri, A., Phys. Rev. B 75, 195309 (2007).10.1103/PhysRevB.75.195309CrossRefGoogle Scholar
Mizuno, S. and Tamura, S., Phys. Rev. B, 45, 2, 734741 (1992).10.1103/PhysRevB.45.734CrossRefGoogle Scholar
Trigo, M., Bruchhausen, A., Fainstein, A., Jusserance, B., and Thierry-Mieg, V., Phys. Rev. Lett., 89, 22, (2002).10.1103/PhysRevLett.89.227402CrossRefGoogle Scholar
Chen, J. and Shen, W. Z., “Raman study of phonon modes and disorder effects in Pb1–xSrxSe alloys grown by molecular beam epitaxy”, J. Appl. Phys. 99, 013513 (2006).10.1063/1.2159079CrossRefGoogle Scholar
Zang, Y., Ke, X., Chen, C., Yang, J., and Kent, P. R. C., “Thermodynamic properties of PbTe, PbSe, and PbS: First-principles study”, Phys. Rev. B 80, 024304 (2009).10.1103/PhysRevB.80.024304CrossRefGoogle Scholar
Wang, H., Pei, Y., LaLonde, A. D., and Snyder, G. J., Advanced Materials 23, 13661370 (2011).10.1002/adma.201004200CrossRefGoogle Scholar
McCann, P. J., Fang, X. M., Liu, W. K., N Strecker, B., and Santos, M. B., J. Crys. Growth 175/176, 1057 (1997).10.1016/S0022-0248(96)00913-XCrossRefGoogle Scholar
Jeffers, J. D., Namjou, K., Cai, Z., McCann, P. J., and Olona, L., Appl. Phys. Lett. 99, 19031905 (2011).10.1063/1.3615797CrossRefGoogle Scholar
Elizondo, L. A., Li, Y., Sow, A., Kamana, R., Wu, H.Z., Mukherjee, S., Zhao, F., Shi, Z., and McCann, P. J., J. Appl. Phys., 101, 104504 (2007).10.1063/1.2729467CrossRefGoogle Scholar
Shalyt, S.S., Muzhdaba, Z. M., and Galetskaya, A. D., Soviet Physics – Solid State 10, 1018 (1968).Google Scholar
Vineis, C. J., Harman, T. C., Calawa, S. D., Walsh, M. P., Reeder, R. E., Singh, R., and Shakouri, A., Phys. Rev. B 77, 235202 (2008).10.1103/PhysRevB.77.235202CrossRefGoogle Scholar
Kanatzidis, M. G., Chem. Mater. 22, 648659 (2010).10.1021/cm902195jCrossRefGoogle Scholar
Koh, Y. K., Vineis, C. J., Calawa, S. D., Walsh, M. P., and Cahill, D. G., Appl. Phys. Lett. 94, 153101 (2009).10.1063/1.3117228CrossRefGoogle Scholar