Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T08:36:56.140Z Has data issue: false hasContentIssue false

Crystal Growth at Low Temperatures - Solvothermal Synthesis and Crystal Structures of Two Mercury Tellurides

Published online by Cambridge University Press:  15 February 2011

Jing Li
Affiliation:
Department of Chemistry, Rutgers University, Camden, NJ 08102, jingli@crab.rutgers.edu
Zhen Chen
Affiliation:
Department of Chemistry, Rutgers University, Camden, NJ 08102, jingli@crab.rutgers.edu
Jamal L. Kelley
Affiliation:
Department of Chemistry, Rutgers University, Camden, NJ 08102, jingli@crab.rutgers.edu
Davide M. Proserpio
Affiliation:
Dipartimento di Chimica Strutturale e Stereochimica Inorganica, Universita' di Milano, 20133 Milano, Italy, davide@csmtbo.mi.cnr.it
Get access

Abstract

Two mercury tellurium compounds [Mn(en)3]2Hg2Te9 and {[Mn(en)3]2Cl2}(Hg2Te4) have been synthesized at 180°C by solvothermal reactions using ethylenediamine as solvent. Single crystal X-ray diffraction analyses show that both compounds crystallize in monoclinic system, space group P21/c (no. 14) with four formula units in the unit cell. The cell dimensions are: a = 12.019(1) Å, b = 28.731(4) Å, c = 18.267(4) Å, β = 98.04(1)°, V = 6246(2) Å3 for [Mn(en)3]2Hg2Te9 and a = 15.720(3) Å, b = 16.812(3) Å, c = 15.224(3) Å, β= 114.31(1)°, V = 3668(1) Å3 for {[Mn(en)3]2Cl2}(Hg2Te4).[Mn(en)3]2Hg2Te9 contains pseudo one-dimensional chains of weakly bound (Hg2Te9)4− Zintl anions. The structure of {[Mn(en)3]2Cl2}(Hg2Te4) contains one-dimensional chains of Zintl anion 1 [(Hg2Te4)2−] formed by linking five-membered rings Hg2Te3 through bridging Te atoms. In both structures ethylenediamine incorporates into the manganese complex cation as bidentate ligand.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Li, J., Rafferty, B. G., Mulley, S. and Proserpio, D. M., Inorg. Chem. 34, 6417 (1995).Google Scholar
2. Li, J., Chen, Z., Lam, K.-C., Mulley, S. and Proserpio, D.M., Inorg. Chem., in press.Google Scholar
3. Li, J., Chen, Z., Emge, T. J. and Proserpio, D. M., Inorg. Chem., in press.Google Scholar
4. Li, J., Chen, Z., and Proserpio, D. M., to appear in J. Alloys and Compounds.Google Scholar
5. Li, J., Chen, Z., Proserpio, D. M., Emge, T. J. and Tan, Y., to appear in Inorg. Chim. Acta.Google Scholar
6. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M.C., Polidori, G., and Camalli, M., J. Appl. Crystallogr. 27, 435 (1994).Google Scholar
7. Sheldrick, G. M., SHELX-93: program for structure refinement: University of Goettingen: Germany, 1994.Google Scholar
8. Keller, E., SCHAKAL 92: a computer program for the graphical representation of crystallographic models: University of Freiburg: Germany, 1992.Google Scholar
9. Bondi, A., J.Phys. Chem. 68, 441 (1964).Google Scholar
10. Alcock, N. W., Adv. Inorg. Chem. 15, 1 (1972).Google Scholar
11. Haushalter, R. C, Angew. Chem., Int. Ed. Engl. 24, 433 (1985).Google Scholar
12. Kim, K. -W. and Kanatzidis, M. G., Inorg. Chim. Acta 224, 163 (1994).Google Scholar
13. Dhingra, S.S., Warren, C. J., Haushalter, R. C. and Bocarsly, A. B., Chem. Mater. 6, 2382 (1994).Google Scholar
14. Saito, Y., Inorganic Molecular Dissimmetry, Springer-Verlag, Berlin, 1992, pp. 5659.Google Scholar