No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Coin-shaped multicrystalline Si1-xGex crystals were grown using a Brigdman method combined with die-casting growth. Si1-xGex alloy is known as a candidate material for producing Auger generation, which creates more than one electron/hole pair per absorbed photon. Since Si1-xGex alloy shows a complete series of solid solutions, precipitating crystals with a certain composition of silicon or germanium by conventional selective growth methods is burdensome. Using die-casting combined with Bridgman growth brought about Si1-xGex precipitation in a form completely different from that predicted by the Si-Ge phase diagram. By combining this growth with subsequent heat treatment of the precipitated Si1-xGex sample, Si1-xGex (x= 0.5 ± 3 %) could be obtained. Indirect band-gap energy was estimated by measuring room-temperature optical absorption coefficient of the grown samples.