Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T14:32:54.872Z Has data issue: false hasContentIssue false

Crystal Structure Analysis of the Cr2O3 thin films

Published online by Cambridge University Press:  07 June 2012

Nobuyuki Iwata
Affiliation:
CST, Nihon University, 7-24-1 Narashinodai, Funabashi-shi, Chiba, 274-8501 Japan
Takuji Kuroda
Affiliation:
CST, Nihon University, 7-24-1 Narashinodai, Funabashi-shi, Chiba, 274-8501 Japan
Hiroshi Yamamoto
Affiliation:
CST, Nihon University, 7-24-1 Narashinodai, Funabashi-shi, Chiba, 274-8501 Japan
Get access

Abstract

Using DC-RF magnetron sputtering method, the stress free c- and r-oriented Cr2O3 thin films were grown on c- and r-cut sapphire substrates, respectively. The c-oriented film grown at 580 ºC shows the smoothest surface with a surface average (Ra) of 0.17, although the c-surface energy is the highest. The origin of the smooth surface is expected that the presence of a twin grain due to a dislocation of Cr atoms, demonstrated by a reciprocal space mapping. The step height corresponding to that of the bulk is clearly observed. The r-oriented films epitaxially grow without twin grain. The Ra is 1.56 in the film grown at 580 ºC because of deep trenches due to a lattice mismatch and no dislocation like c-oriented films. Since the surface energy of the r-surface is the lowest, the terrace is quite smooth in one grain even at higher substrate temperature of 840 ºC.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Meiklejohn, W. H. and Bean, C. P., Phys. Rev. 5, 14131414 (1956).CrossRefGoogle Scholar
Meiklejohn, W. H., J. Appl. Phys. 33, 1328 (1962).CrossRefGoogle Scholar
Borisov, P. and Kleemann, W., J. Appl. Phys. 110, 033917 (2011).CrossRefGoogle Scholar
He, X., Wang, Y., Wu, N., Caruso, A. N., Vescovo, E., Belashchenko, K. D., Dowben, P. A., and Binek, C., Nature Mater. 9, 579585 (2010).CrossRefGoogle Scholar
Lim, S.-H., Muraoka, M., Lofland, S. E., Zambano, A. J., Riba, L. G. S.-, and Takeuchi, I., J. Magn. Magn. Mater. 321, 1955 (2009).CrossRefGoogle Scholar
Asada, T., Nagase, K., Iwata, N. and Yamamoto, H., Jpn. J. Appl. Phys. 47, 546 (2008).CrossRefGoogle Scholar
Iwata, N., Asada, T., Ootsuki, S., and Yamamoto, H., Mater. Res. Soc. Symp. Proc. 1034, K1067 (2008).Google Scholar
Iwata, N., Asada, T., Nagase, K., Yamada, T. and Yamamoto, H., Physica C 463465, 1005 (2007).CrossRefGoogle Scholar
Lawrence, P. J., Parker, S. C., and Tasker, P. W., J. Am. Ceram. Soc. 71, C-389 (1988).CrossRefGoogle Scholar
Mändar, H., Uustare, T., Aarik, J., Rosental, A., Thin Solid Films 515, 4570 (2007).CrossRefGoogle Scholar
Scarano, D., Spoto, G., Bordiga, S., Ricchiardi, G., and Zecchina, A., J. Electron Spectrosc. Relat. Phenom. 6465, 307 (1993).CrossRefGoogle Scholar