Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T05:38:10.350Z Has data issue: false hasContentIssue false

Crystal Structure of Non-Doped and Sn-Doped α-(GaFe)2O3 Thin Films.

Published online by Cambridge University Press:  15 January 2013

Kentaro Kaneko*
Affiliation:
Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan Photonics and Electronics Science and Engineering Center, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8520, Japan
Kazuaki Akaiwa
Affiliation:
Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan Photonics and Electronics Science and Engineering Center, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8520, Japan
Shizuo Fujita
Affiliation:
Photonics and Electronics Science and Engineering Center, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8520, Japan
Get access

Abstract

Corundum structured α-(GaFe)2O3 alloy thin films were obtained on c-plane sapphire substrates by the mist chemical vapor deposition method. Wide range of X-ray diffraction 2θ/θ scanning measurements indicated that these crystals were epitaxially grown on c-plane sapphire substrates and these are no other crystal oriented phase. The cross-sectional and plane-view transmission electron microscope images showed the growth along the c-axis of α-(GaFe)2O3 thin films on sapphire substrates, forming joint of columnar structure. The non-doped α-(GaFe)2O3 thin films showed ferromagnetic properties at 300 K, though the origin of ferromagnetism still remained unresolved. In order to enhance the spin-carrier interaction, Sn doped α-(GaFe)2O3 alloy thin films were fabricated on c-plane sapphire substrates. X-ray diffraction 2θ/θ and ω scanning measurement results indicated that the highly-crystalline films were epitaxially grown on substrates in spite of the Sn-doping.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Roy, R., Hill, V. G., and Osborn, E. F.: J. Am. Chem. Soc. 74 (1952) 719.CrossRefGoogle Scholar
Higashiwaki, M., Sasaki, K., Kuramata, A., Masui, T., and Yamakoshi, S.: Appl. Phys. Lett. 100 (2012) 013504.CrossRefGoogle Scholar
Oshima, T., Okuno, T., Arai, N., Suzuki, N., Hino, H., and Fujita, S.: Jpn. J. Appl. Phys. 48 (2009) 011605 CrossRefGoogle Scholar
Kokubun, Y., Miura, K., Endo, F., and Nakagomi, S.: Appl. Phys. Lett. 90 (2007) 031912.CrossRefGoogle Scholar
Oshima, T., Okuno, T., and Fujita, S.: Jpn. J. Appl. Phys. 46 (2007) 7217.CrossRefGoogle Scholar
Oshima, T., Okuno, T., Arai, N., Suzuki, N., Ohira, S., and Fujita, S.: Appl. Phys. Express 1 (2008) 011202.CrossRefGoogle Scholar
Chen, C.-C. and Chen, C.-C.: J. Mater. Res. 19 (2004) 1105.CrossRefGoogle Scholar
Ogita, M., Higo, K., Nakanishi, Y., and Hatanaka, Y.: Appl. Surf. Sci. 175 (2001) 721.CrossRefGoogle Scholar
Hayashi, H., Huang, R., Ikeno, H., Oba, F., Yoshioka, S., Tanaka, I., and Sonoda, S..: Appl. Phys. Lett. 89 (2006) 181903.CrossRefGoogle Scholar
Huang, R., Hayashi, H., Oba, F., and Tanaka, I.: J. Appl. Phys. 101 (2007) 063526.CrossRefGoogle Scholar
Hayashi, H., Huang, R., Oba, F., Hirayama, T., and Tanaka, I.: J. Mater. Sci. 46 (2011) 4169 CrossRefGoogle Scholar
Remeika, J. P.: J. Appl. Phys. 31 (1960) 263S.CrossRefGoogle Scholar
Kida, N., Kaneko, Y., He, J. P., Matsubara, M., Sato, H., Arima, T., Akoh, H., and Tokura, Y.: Phys. Rev. Lett. 96 (2006) 167202.CrossRefGoogle Scholar
Arima, T.: J. Phys.: Condens.Matter 20 (2008) 434211 Google Scholar
Kaneko, K., Kakeya, I., Komori, S., and Fujita, S.: J. Appl. Phys. (submitted) Google Scholar
Ito, H., kaneko, K., and Fujita, S.: Jpn. J. Appl. Phys. 51 (2012) 100207 CrossRefGoogle Scholar
Shannon, R. D.: Acta Cryst. A32 (1976) 751 CrossRefGoogle Scholar
Kaneko, K., Nomura, T., Kakeya, I., and Fujita, S.: Appl. Phys. Express 2 (2009) 075501 CrossRefGoogle Scholar
Akaiwa, K. and Fujita, S.: Jpn. J. Appl. Phys. 51 (2012) 070203 Google Scholar
Nishinaka, H., Kawaharamura, T., and Fujita, S.: Jpn. J. Appl. Phys. 46 (2007) 6811 CrossRefGoogle Scholar
Kawaharamura, T., Nishinaka, H., and Fujita, S.: Jpn. J. Appl. Phys. 47 (2008) 4669 CrossRefGoogle Scholar
Kaneko, K., Kawanowa, H., Ito, H., and Fujita, S.: Jpn. J. Appl. Phys. 51 (2012) 020201 CrossRefGoogle Scholar
Dzyaloshinsky, I.: J. Phys. Chem. Solids 4 (1958) 241255.CrossRefGoogle Scholar
Moriya, T.: Phys. Rev. Lett. 4 (1960) 228.CrossRefGoogle Scholar
Kawaharamura, T., Dang, G. T., and Furuta, M.: Jpn. J. Appl. Phys. 51 (2012) 040207 Google Scholar