Published online by Cambridge University Press: 10 February 2011
The availability of large-size, detector-grade CdZnTe crystals in large volume and at affordable cost is a key to the further development of radiation-detector applications based on this II-VI compound. The high pressure Bridgman technique that supplies the bulk of semiinsulating CdZnTe crystals used in X-ray, γ-ray detector and imaging devices at present is hampered by material issues that limit the yield of large-size and high-quality crystals. These include ingot cracking, formation of pipes, material homogeneity and the reproducibility of the material from growth to growth. The incorporation of macro defects in the material during crystal growth poses both material quality limitations and technological problems for detector fabrication. The effects of macro defects such as Te inclusions and pipes on the charge-transport properties of CdZnTe are discussed in this paper. Growth experiments designed to study the origin and formation of large defects are described. The importance of material-crucible interactions and control of thermodynamic parameters during crystal growth are also addressed. Opportunities for growth improvements and yield increases are identified.