Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T10:00:36.376Z Has data issue: false hasContentIssue false

The Current Status of Silicon-On-Sapphire and other Heteroepitaxial Silicon-On-Insulator Technologies

Published online by Cambridge University Press:  21 February 2011

I. Golecki*
Affiliation:
Rockwell International Corporation, Defense Electronics Operations, Microelectronics Research and Development Center, 3370 Miraloma Avenue, Anaheim, CA 92803.
Get access

Abstract

The present understanding of the properties of thin (≤0.6 μm) heteroepitaxial Si films grown on single-crystal bulk and thin film insulators is reviewed. Three areas are covered: (a) as-deposited Si films on bulk insulators, with particular emphasis on sapphire and cubic zirconia (b) post-growth processing methods to reduce the defect concentration and compressive strain in such Si films and (c) the growth and properties of monocrystalline insulating films on bulk Si and of Si on such films. The desired characteristics of the insulating material are given, and it is shown that the mismatch in thermal expansion coefficients between the insulator and Si dominates the properties of heteroepitaxial Si films. Present and future areas of application for Si-on-insulator technologies are briefly described, and directions for further studies are proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bartelink, D.J., Mat. Res. Soc. Symp. Proc. 5, 249 (1982); Panel discussion, Japn. J. Appl. Phys. 22, Suppl. 22–1, 571 (1982).Panel discussion, Japn. J. Appl. Phys. 22, Suppl. 22–1, 571 (1982).Google Scholar
2. Katz, J., Bar–Chaim, N., Chen, P.C., Margalit, S., Ury, I., Wilt, D., Yust, M., and Yariv, A., Appl. Phys. Lett. 37, 211 (1980).10.1063/1.91828Google Scholar
3. (a) Chang, C.C., J. Vac. Sci. Technol. 8, 500 (1971). (b) J.C. Bean, Appl. Phys. Lett. 36, 741 (1980).10.1116/1.1314585Google Scholar
4. Mukai, R., Sasaki, N., Iwai, T., Kawamura, S., and Nakano, M., 1983 IEEE Intl. Electron Devices Mtg., December 1983, Technical Digest, # 14.4, p. 360; S. Akiyama, S. Ogawa, M. Yoneda, N. Yoshii, and Y. Terui, 1983 IEEE Intl. Electron Devices Mtg., December 1983, Technical Digest. # 14.2, p. 352.Google Scholar
5. Cullen, G.W., ed., special issue of J. Crystal Growth 63, # 3 (1983).Google Scholar
6. Ohmura, Y., Matsushita, Y., and Kashiwagi, M., Japn. J. Appl. Phys. 21, L152 (1982); Y. Kunii, M. Tabe, and K. Kajiyama, Japn. J. Appl. Phys. 22, Suppl. 22–1, 605 (1982); J.A. Roth, 1983 Annual Mtg. Mater. Res. Soc., November 1983, Boston, MA, # A5.2.10.1143/JJAP.21.L152Google Scholar
7. Manasevit, H.M. and Simpson, W.I., J. Appl. Phys. 35, 1349 (1964).CrossRefGoogle Scholar
8. Salama, c. and Young, L., Proc. IEEE 53, 2156 (1965).10.1109/PROC.1965.4538Google Scholar
9. Weissmantel, C., Fiedler, O., Hecht, G., and Reisse, G., Thin Solid Films 13, 359 (1972).Google Scholar
10. Suzuki, S., Takai, H., Okuda, H., and Itoh, T., Japn. J. AppI. Phys. 19, Suppl. 191, 647 (1980).10.7567/JJAPS.19S1.647Google Scholar
11. Takagi, T., Yamada, I., and Sasaki, A., 1976 IEEE Intl. Electron Devices Mtg., December 1976, Technical Digest, # 24.4, p. 605. CrossRefGoogle Scholar
12. (a) Seiter, H. and Zaminer, Ch., Z. angew. Phys. 20, 158 (1965). (b) H.M. Manasevit and D.H. Forbes, J. Appl. Phys. 37, 734 (1966). (c) H.M. Manasevit, J. Electrochem. Soc. 126, 1785 (1979).Google Scholar
13. (a) Golecki, I., Manasevit, H.M., Moudy, L.A., Yang, J.J., and Mee, J.E., Appl. Phys. Lett. 42, 501 (1983). (b) I. Golecki, H.M. Manasevit, L.A. Moudy, J.J. Yang, J.E. Mee, and T.J. Magee, presented at the 24th Electronics Materials Conf., Fort Collins, CO, June 1982, # D-8.10.1063/1.93982Google Scholar
14. Manasevit, H.M., Forbes, D.H., and Cadoff, I.B., Trans. Met. Soc. AIME, 236, 275 (1966).Google Scholar
15. Joyce, B.A., Bicknell, R.W., Charig, J.M., and Stirland, D.J., Sol. St. Comm. 1, 107 (1963).Google Scholar
16. Tallman, R.L., Chu, T.L., Gruber, G.A., Oberly, J.J., and Wolley, E.D., J. Appl. Phys. 37, 1588 (1966).10.1063/1.1708571CrossRefGoogle Scholar
17. Unvala, B.A., Le Vide 18, # 104, 109 (1963).Google Scholar
18. Chu, T.L., Francombe, M.H., Gruber, G.A., Oberly, J.J., and Tallman, R.L., Westinghouse Res. Lab. Rept. # AFCRL-65–574, AD 619992 (1965).Google Scholar
19. Manasevit, H.M. (1973, unpublished).Google Scholar
20. Shimaoka, G. and Chang, S.C., J. Vac. Sci. Technol. 9, 235 (1972).10.1116/1.1316565Google Scholar
21. Ho, V.Q. and Sugano, T., IEEE Trans. Electron Devices, ED-29, 487 (1982).Google Scholar
22. (a) Union Carbide Corp., Washougal, WA 98671, USA. (b) Kyoto Ceramic Co. Ltd., Gamoo-Gun, Shiga, 529–15, Japan.Google Scholar
23. Manasevit, H.M., J. Crystal Growth 22, 125 (1974).Google Scholar
24. Cullen, G.W. and Wang, C.C., eds., Heteroepitaxial Semiconductors for Electronic Devices (Springer: New York, 1978).10.1007/978-1-4612-6267-1CrossRefGoogle Scholar
25. Matthews, J.W., ed., Epitaxial Growth (Academic Press: New York, 1975); Ch. 9, by E. Grunbaum, contains an extensive list of heteroepitaxial systems.Google Scholar
26. (a) Ang, C.Y. and Manasevit, H.M., Sol. St. Electronics 8, 994 (1965); D.J. Dumin, J. Appl. Phys. 36, 2700 (1965); Th. Englert, G. Abstreiter, and J. Pontcharra, Sol. St. Electronics 23, 31 (1980). (b) K. Yamazaki, M. Yamada, K. Yamamoto, and K. Abe (pre-print, 1984). (c) S.R.J. Brueck, B-Y. Tsaur, J.C.C. Fan, D.V. Murphy, T.F. Deutsch, and D. Silversmith, Appl. Phys. Lett. 40, 895 (1982).10.1016/0038-1101(65)90167-XGoogle Scholar
27. Golecki, I., Glass, H.L., Kinoshita, G., and Magee, T.J., Applic. Surf. Sci. 9, 299 (1981).10.1016/0378-5963(81)90044-1CrossRefGoogle Scholar
28. Hu, S.M., J. Appl. Phys. 40, 4413 (1969); J.R. Patel and A.R. Chaudhuri, Applic. Surf. Sci. 34, 2788 (1963).Google Scholar
29. Manasevit, H.M., Golecki, I., Moudy, L.A., Yang, J.J., and Mee, J.E., J. Electrochem. Soc. 130, 1752 (1983).10.1149/1.2120076Google Scholar
30. Picraux, S.T., Appl. Phys. Lett. 20, 91 (1972).10.1063/1.1654061Google Scholar
31. Abrahams, M.S. and Buiocchi, C.J., Appl. Phys. Lett. 27, 325 (1975).10.1063/1.88487Google Scholar
32. Hsu, S.T. and Scott, J.H., Jr., RCA Rev. 36, 240 (1975).Google Scholar
33. Ruth, R.P., Hughes, A.J., Kenty, J.L., Manasevit, H.M., Medellin, D., Thorsen, A.C., Chan, Y.T., Viswanathan, C.R., and Ring, M.A., Final Report, Contract # DAAH01–70-C-1311, ARPA Order # 1585 (1973).Google Scholar
34. Abrahams, M.S., Buiocchi, C.J., Smith, R.T., Corboy, J.F. Jr., Blanc, J., and Cullen, G.W., J. Appl. Phys. 47, 5139 (1976); J. Trilhe, J. Borel, and J.P. Duchemin, J. Crystal Growth 45, 439 (1978).10.1063/1.322585CrossRefGoogle Scholar
35. Ponce, F.A., Appl. Phys. Lett. 41, 371 (1982); Mat. Res. Soc. Symp. Proc. 2, 285 (1981).10.1063/1.93531CrossRefGoogle Scholar
36. Manasevit, H.M., Miller, A., Morritz, F.L., and Nolder, R., Trans. Met. Soc. AIME 233, 540 (1965).Google Scholar
37. Maurits, J.E.A., Sol. St. Technol. 20, 81 (1977).Google Scholar
38. Readey, D.W. and Kuczynski, G.C., J. Amer. Cer. Soc. 49, 26 (1966).10.1111/j.1151-2916.1966.tb13142.xCrossRefGoogle Scholar
39. Tseng, W.F., Repace, J.L., Hughes, H.L., and Christou, A., Thin Solid Films 82, 213 (1981).Google Scholar
40. (a) Golecki, I., Kinoshita, G., and Paine, B.M., Nucl. Instrum. and Meth. 182/183, 675 (1981). (b) I. Golecki, H.L. Glass, and G. Kinoshita, Appl. Phys. Lett. 40, 670 (1982).10.1016/0029-554X(81)90795-3Google Scholar
41. Rao, D.B. and Jacob, K.T., J. Crystal Growth 58, 79 (1982).10.1016/0022-0248(82)90212-3Google Scholar
42. Robertson, G.D. Jr., Vasudev, P.K., Wilson, R.G., and Deline, V.R., Applic. Surf. Sci. 14, 128 (1982/83).10.1016/0378-5963(82)90047-2CrossRefGoogle Scholar
43. Golecki, I., Maddox, R.L., and Stika, K.M., J. Electronic Mater. 13, 373 (1984); presented at the 25th Electronic Materials Conf., Burlington, VT, June y; 1983, # N-4.10.1007/BF02656685Google Scholar
44. Ishida, M., Yasuda, Y., Wakamatsu, H., Abe, H., Nishinaga, T., and Nakamura, T., Japn. J. Appl. Phys. 22, L438 (1983); M. Ishida, H. Ohyama, S. Sasaki, Y. Yasuda, T. Nishinaga, and T. Nakamura, Japn. J. Appl. Phys. 20, L541 (1981).10.1143/JJAP.22.L438Google Scholar
45. Tanno, K. and Kanamori, M., J. Crystal Growth 58, 73 (1982).10.1016/0022-0248(82)90211-1CrossRefGoogle Scholar
46. Amano, J. and Carey, K.W., J. Crystal Growth 56, 296 (1982); Appl. Phys. Lett. 39, 163 (1981).10.1016/0022-0248(82)90447-XGoogle Scholar
47. Smith, R.T. and Weitzel, C.E., J. Crystal Growth 58, 61 (1982); C.E. Weitzel and R.T. Smith, J. Electrochem. Soc. 125, 792 (1978).Google Scholar
48. Schlötterer, H., Sol. St. Electronics 11, 947 (1968).10.1016/0038-1101(68)90114-7CrossRefGoogle Scholar
49. (a) Golecki, I., Final Technical Report # AFWAL-TR-83–4137, Alternate Substrate Materials: Silicon on Yttria-Stabilized Cubic Zirconia (Si/YSZ), (January 1984). (b) I. Golecki, R.L. Maddox, H.L. Glass, A.L. Lin, and H.M. Manasevit, presented at 26th Electronic Materials Conf., Santa Barbara, CA, June 1984.Google Scholar
50. Lin, A.L. and Golecki, I., Proc. 9th Intl. Conf. on Chemical Vapor Deposition, Cincinnati, OH, May 1984(in press).Google Scholar
51. Wenckus, J.F., Ceres Corp., Billerica, MA (private communication).Google Scholar
52. Light, T.B. and Sedgwick, T.O., IBM Techn. Discl. Bull. 12, 1496 (1970).Google Scholar
53. Lau, S.S., Matteson, S., Mayer, J.W., Revesz, P., Gyulai, J., Roth, J., Sigmon, T.W., and Cass, T., Appl. Phys. Lett. 34, 76 (1979); Proc. ist Conf. on Ion Beam Modification of Materials, Budapest, Hungary, September 1978, J. Gyulai, T. Lohner, and E. Pasztor, eds., p.985; S.S. Lau, J.W. Mayer, and T.W. Sigmon, U.S. Patent # 4,177,084 (Dec. 4, 1979).10.1063/1.90564Google Scholar
54. Golecki, I., Chapman, G.E., Lau, S.S., Tsaur, B.Y., and Mayer, J.W., Phys. Lett. 71A, 267 (1979).Google Scholar
55. Christel, L.A., Gibbons, J.F., and Sigmon, T.W., J. Appl. Phys. 52, 7143 (1981).10.1063/1.328688CrossRefGoogle Scholar
56. Roulet, M.E., Schwob, P., Golecki, I., and Nicolet, M-A., Electron. Lett. 15, 527 (1979).10.1049/el:19790380Google Scholar
57. Golecki, I. and Nicolet, M-A., Sol. St. Electronics 23, 803 (1980).Google Scholar
58. Csepregi, L., Kennedy, E.F., Mayer, J.W., and Sigmon, T.W., J. Appl. Phys. 49, 3906 (1978).10.1063/1.325397Google Scholar
59. Golecki, I., Kinoshita, G., Gat, A., and Paine, B.M., Appl. Phys. Lett. 37, 919 (1980) and 38, 648 (1981).10.1063/1.91859CrossRefGoogle Scholar
60. (a) Richmond, E.D., Knudson, A.R., and Magee, T.J., Thin Solid Films 93, 22 347 (1982). (b) Ibid., J. Vac. Sci. Technol. (in press, 1984).Google Scholar
61. Inoue, T. and Yoshii, T., Appl. Phys. Lett. 36, 64 (1980); Nucl. Instrum. and Meth. 182/183, 683 (1981).Google Scholar
62. Maddox, R.L., Glass, H.L., Lin, A.L., and Golecki, I. (1983, unpublished).Google Scholar
63. Lagowski, J., Jastrzebski, L., Duffy, M.T., Magee, C.W., and Cullen, G.W., J. Electrochem. Soc. 131, 634 (1984).10.1149/1.2115647Google Scholar
64. Ohmura, Y., Inoue, T., and Yoshii, T., J. Appl. Phys. 54, 6779 (1983); Sol. St. Comm. 37, 583 (1981).10.1063/1.331840Google Scholar
65. Yoshii, T., presented at 23rd Electronic Materials Conf., Santa Barbara, CA, June 1981, # 08; T. Yoshii, S. Taguchi, T. Inoue, and H. Tango, Japn. J. Appl. Phys. 21, Suppl.21–1, 175 (1982); S. Taguchi, M. Nakahara, T. Yoshii, K. Maeguchi, and N. Tango, Electrochem. Soc. Extended Abstracts Vol.83–1, 643 (1983).Google Scholar
66. Marolf, J. and Cass, T., presented at IEEE 1979 SOS Workshop, Carefree, AZ, October 1979.Google Scholar
67. Yoshida, M., Nakahara, M., Kimura, M., Taguchi, S., Maeguchi, K., and Tango, H., 1983 IEEE Intl. Electron Devices Mtg., Washington, DC, December 1983, Technical Digest, # 14.7, p. 372.Google Scholar
68. Abrahams, M.S. and Ham, W.E., Appl. Phys. Lett. 33, 773 (1978).Google Scholar
69. Carey, K.W., Ponce, F.A., Amano, J., and Aranovich, J., J. Appl. Phys. 54, 4414 (1983).10.1063/1.332635Google Scholar
70. Gibbons, J.F., Johnson, W.S., and Mylroie, S.W., Projected Range Statistics (Dowden, Hutchinson, ' Ross, Inc.: Stroudsburg, PA, 1975).Google Scholar
71. (a) Lee, J.Y., Mayer, D.C., and Vasudev, P.K., 1983 IEEE Intl. Electron Devices Mtg., Washington, DC, December 1983, Technical Digest, # 14.8, 376. (b) A. Gupta and P.K. Vasudev, Sol. St. Technol. 26, 129 (1983).Google Scholar
72. Reedy, R.E., Sigmon, T.W., and Christel, L.A., Appl. Phys. Lett. 42, 707 (1983).Google Scholar
73. Yamamoto, Y., Sugiyama, T., Hara, A., and Inada, T., J. Appl. Phys. 53, 793 (1982); H. Kobayashi, T. Takahashi, Y. Yamamoto, and T. Inada, in Proc. lst Symp. on Ion Beam Technology, Hosei University, Tokyo, Japan, December 1982, p.101.10.1063/1.329994CrossRefGoogle Scholar
74. Sai-Halasz, G.A. and Hodgson, R.T., Phys. Lett. A 77A, 375 (1980).CrossRefGoogle Scholar
75. Sai-Halasz, G.A., Wang, F.F., Sedgwick, T.O., and Segmuller, A., Appl. Phys. Lett. 36, 419 (1980).Google Scholar
76. Kobayashi, Y., Suzuki, T., Kamei, T., and Tamura, M., Electrochem Soc. Extended Abstracts Vol.802, 1195 (1980); Y. Kobayashi, T. Ikeda, M. Nakamura, and T. Suzuki, Japn. J. Appl. Phys. 21, Suppl.21–1, 181 (1981).Google Scholar
77. (a) Yamazaki, K., Yamada, M., Yamamoto, K., and Abe, K., Japn. J. Appl. Phys. 20, L371 (1981); M. Yamada, K. Yamazaki, H. Kotani, K. Yamamoto, and K. Abe, Mat. Res. Soc. Symp. Proc. 1, 503 (1981). (b) M. Yamada, S. Hara, K. Yamamoto, and K. Abe, Japn. J. Appl. Phys. 19, L261 (1980).10.1143/JJAP.20.L371Google Scholar
78. Roulet, M.E., Schwob, P., Affolter, K., Lüthy, W., Allmen, M. von, Fallavier, M., Mackowski, J.M., Nicolet, M-A., and Thomas, J.P., J. Appl. Phys. 50, 5536 (1979); M.E. Roulet and P. Schwob, presented at the 9th European Solid State Device Research Conf., Munich, W. Germany, September 1979; W. Lüthy, K. Affolter, H.P. Weber, M.E. Roulet, M. Fallavier, J.P. Thomas, and J.M. Mackowski, Appl. Phys. Lett. 35, 873 (1979).10.1063/1.326616Google Scholar
79. (a) Yaron, G., Hess, L.D., and Kokorowski, S.A., Sol. St. Electronics 23, 893 (1980); G. Yaron and L.D. Hess, IEEE Trans. Electron Devices ED-27, 573 (1980). (b) A. Gupta, Y.M. Chi, J.B. Valdez, G.L. Olson, and L.D. Hess, IEEE Trans. Nucl. Sci. NS-28, 4080 (1981).Google Scholar
80. Pitt, M.G., Godfrey, D.J., and Adams, A.E., Electrochem. Soc. Extended Abstracts Vol.821, 285 (1982).Google Scholar
81. Jastrzebski, L., Bell, A.E., and Wu, C.P., Appl. Phys. Lett. 35, 608 (1979).10.1063/1.91225Google Scholar
82. Ihara, M., Arimoto, Y., Jifuku, M., Yamaoka, T., and Kurokawa, K., 1981 IEEE Intl. Solid State Circuits Conf., Technical Digest, p.210 (1981); M. Ihara, Microelectronic Eng. 1, 1 (1983); M. Ihara, Y. Arimoto, M. Jifuku, T. Kimura, S. Kodama, H. Yamawaki, and T. Yamaoka, J. Electrochem. Soc. 129, 2569 (1982).Google Scholar
83. Mikami, M., Hokari, Y., Egami, K., Tsuya, H., and Kanamori, M., 15th Conf.on Solid State Devices and Materials, Tokyo, Japan, September 1983, Extended Abstracts Vol., # A-23, p.31 (1983); Y. Hokari, M. Mikami, K. Egami, H. Tsuya, and M. Kanamori, 1983 IEEE Intl. Electron Devices Mtg., Washington, DC, December 1983, Technical Digest, # 14.6, p.368; K. Egami, M. Mikami, and H. Tsuya, Appl. Phys. Lett. 43, 757 (1983).Google Scholar
84. Mee, J.E. (1983, unpublished).Google Scholar
85. (a) Farrow, R.F.C., Sullivan, P.W., Williams, G.M., Jones, G.R., and Cameron, D.C., J. Vac. Sci. Technol. 19, 415 (1981). (b) P.W. Sullivan, T.I. Cox, R.F.C. Farrow, G.R. Jones, D.B. Gasson, and C.S. Smith, J. Vac. Sci. Technol. 20, 731 (1982).10.1116/1.571030Google Scholar
86. Asano, T. and Ishiwara, H., Japn. J. Appl. Phys. 21, Suppl. 211, 187 (1982); H. Ishiwara and T. Asano, 1983 Annual Mtg. of the Mater. Res. Soc., Boston, MA, November 1983, # C8.2, and references therein.Google Scholar
87. (a) Phillips, J.M. and Yashinovitz, C.J., J. Vac. Sci. Technol. (1984, in press). (b) J.M. Phillips and J.M. Gibson, 1983 Annual Mtg. of the Mater. Res. Soc., Boston, MA, November 1983, # C8.1 and references therein. (c) C.W. Tu, T.T. Sheng, M.H. Read, A.R. Schlier, T.G. Johnson, W.D. Johnston, Jr., and W.A. Bonner, J. Electrochem. Soc. 130, 2081 (1983).Google Scholar
88. Harrison, T.R., Mankiewich, P.M., and Dayem, A.H., Appl. Phys. Lett. 41, 1102 (1982); M.B. Stern, T.R. Harrison, V.D. Archer, P.F. Liao, and J.C. Bean (pre-print, 1984).Google Scholar
89. (a) Hirai, Y. and Shono, K., J. Crystal Growth 41, 124 (1977); S. Sugiura, T. Yoshida, and K. Shono, Japn, J. Appl. Phys. 22, L426 (1983). (b) T. Takenaka and K. Shono, Japn. J. Appl. Phys. 13, 1211 (1974).Google Scholar
90. Rhodes, W.H. and Carter, R.E., J. Amer. Cer. Soc. 49, 244 (1966).10.1111/j.1151-2916.1966.tb13249.xGoogle Scholar
91. Morita, M., Isogai, S., Shimizu, N., Tsubouchi, K., and Mikoshiba, N., Japn. J. Appl. Phys. 20, L173 (1981); K.L. Wang, K.M. Lakin, and J.K. Liu, J. Appl. Phys. 47, 1580 (1976).Google Scholar
92. Jackson, D.M. Jr., and Howard, R.W., Trans. Met. Soc. AIME 233, 468 (1965).Google Scholar
93. Maloney, T.J., J. Vac. Sci. Technol. Bl, 773 (1983); T.J. Maloney, D.E. Aspnes, H. Arwin, and T.W. Sigmon, Appl. Phys. Lett. 44, 517 (1984).Google Scholar