Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T09:36:36.626Z Has data issue: false hasContentIssue false

Cyclodextrins Stabilize TOPO-(CdSe)ZnS Quantum Dots In Water

Published online by Cambridge University Press:  17 March 2011

Jun Feng
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401, mike_himmel@nrel.gov
Yong-Hyun Kim
Affiliation:
Centers for National Bioenergy and Basic Science, Golden, Colorado 80401
S. B. Zhang
Affiliation:
Centers for National Bioenergy and Basic Science, Golden, Colorado 80401
Shi-You Ding
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401, mike_himmel@nrel.gov
Melvin P. Tucker
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401, mike_himmel@nrel.gov
Garry Rumbles
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401, mike_himmel@nrel.gov
Michael E. Himmel
Affiliation:
National Renewable Energy Laboratory, Golden, Colorado 80401, mike_himmel@nrel.gov
Get access

Abstract

Chemical action between cyclodextrins (CDs) and TOPO-(CdSe)ZnS quantum dots (QDs) generates a water-soluble solution of CD-QDs. Hydrophobic TOPO molecules on surface of the QDs are compatible to thread through the pockets of CDs and make the hydroxyl group on end of CDs to approach the ZnS surface, and then cause the interaction between ZnS and the hydroxyls. In this paper, Photoluminescence of the γ-CD-QD solution appeared about 15 nm of red movement compared with that of the QDs in hexane; 58% replacement of the crystal coordinate bond of Zn-S with that of Zn-O in the ZnS shell was demonstrated by using first-principles density functional theory and the red shift of the photoluminescence of CD-QDs; and –0.11eV of the energy gain of the exchange model was calculated by using an effective mass (EM) model. CD-QDs will provide water-soluble QDs with conjugational group for biology and molecule-device applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chan, W.C.W. and Nie, S.M., Science, 281, 2016(1998).CrossRefGoogle Scholar
2. Mitchell, G.P., Mirkin, C.A. and Letsinger, R.L., J. Am. Chem. Soc. 121, 8122(1999).CrossRefGoogle Scholar
3. Mattoussi, H., Mauro, J. M., Goldman, E. R., Anderson, G. P., Sundar, V. C., Mikulec, F.V. and Bawendi, M. G. J. Am. Chem. Soc 122, 12142(2000).CrossRefGoogle Scholar
4. Pathak, S., Choi, S.K., Arnheim, N., Thompson, M.E., J. Am. Chem. Soc. 123, 4103(2001).CrossRefGoogle Scholar
5. Goldman, E. R., Balighian, E. D., Mattoussi, H., Kuno, M.K., Mauro, J. M., Tran, P. T., and Anderson, G. P., J. Am. Chem. Soc. 124, 6378(2002).CrossRefGoogle Scholar
6. Bruchez, M. J.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 281, 2013(1998).CrossRefGoogle Scholar
7. Gerion, D., Pinaud, F., Williams, S. C., Parak, W. J., Zanchet, D., Weiss, S., and Alivisatos, A. P. J. Phys. Chem. B 105, 8861(2001).CrossRefGoogle Scholar
8. Alivisatos, A.P., Johnsson, K.P., Peng, X.G., Wilson, T.E., Loweth, C.J., Bruchez, M.P., and Schultz, P.G. Nature 382, 609(1996).CrossRefGoogle Scholar
9. Mirkin, C.A., Letsinger, R.L., Mucic, R.C., Storhoff, J.J., Nature 382, 607(1996).CrossRefGoogle Scholar
10. Belcher, A.M., Wu, X.H., Christensen, R.J., Hansma, P.K., Stucky, G.D., Morse, D.E. Nature 381, 56(1996).CrossRefGoogle Scholar
11. Whaley, S. R, English, D.S., Hu, E.L, Barbara, P. F., Belcher, A. M., Nature 404, 665(2000).CrossRefGoogle Scholar
12. Djalali, R., Chen, Y., Matsui, H., J. Am. Chem. Soc. 124, 13660(2000).CrossRefGoogle Scholar
13. Dujardin, E., Peet, C., Stubbs, G., Culver, J.N., Mann, S., Nano Lett 3, 413(2003).CrossRefGoogle Scholar
14. Iacopino, D., Ongaro, A., Nagle, L., Eritja, R., Fitzmaurice, D.. Nanotechnology 14, 447(2003).CrossRefGoogle Scholar
15. Meziani, M.J., Sun, Y. P., J Am Chem Soc 125, 8015(2003).CrossRefGoogle Scholar
16. Ding, S.Y., Jones, M., Tucker, M.P., Nedeljkovic, J., Wall, J., Simon, M., Rumbles, G., Himmel, M.E., Nature Letters, 3, 1581(2003).Google Scholar
17. Tabushi, I., Kiyosuke, Y.I., Sugimoto, T., Yamamura, K., J. Am. Chem. Soc. 100, 916(1978)CrossRefGoogle Scholar
18. Gu, L.Q., Braha, O., Conlan, S., Cheley, S., Bayley, H., Nature 398, 686(1999)CrossRefGoogle Scholar
19. Dabbousi, B. O., Rodriguez-Viejo, J., Mikulec, F. V., Heine, J. R., Mattoussi, H., Ober, R., Jensen, K. F., and Bawendi, M. G.. J. Phys. Chem. B 101, 9463(1997).CrossRefGoogle Scholar
20. Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. and Joannopoulos, J. D. Rev. Mod. Phys. 64, 1045(1992).CrossRefGoogle Scholar
21. Kresse, G., Furthmuller, J., http://cms.mpi.univie.ac.at/VASP.Google Scholar
22. Zhang, S. B., Wei, S.H., Zunger, A., J. Appl. Phys. 83, 3192(1998).CrossRefGoogle Scholar
23. BenDaniel, D. J., and Duke, C.B., Phys. Rev. 152, 683(1996).CrossRefGoogle Scholar