Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-21T13:04:06.771Z Has data issue: false hasContentIssue false

Damage Resistance of In Situ Reinforced Silicon Nitride

Published online by Cambridge University Press:  25 February 2011

Chien-Wei Li
Affiliation:
Allied-Signal Inc., Research and Technology, Morristown, NJ 07962, USA
Charles J. Gasdaska
Affiliation:
Allied-Signal Inc., Research and Technology, Morristown, NJ 07962, USA
Jeffrey Goldacker
Affiliation:
Allied-Signal Inc., Research and Technology, Morristown, NJ 07962, USA
Siu-Ching Lui
Affiliation:
Allied-Signal Inc., Research and Technology, Morristown, NJ 07962, USA
Get access

Abstract

The room temperature fracture behavior for in situ reinforced (ISR) silicon nitride is correlated to its microstructure and R-curve behavior. The relation of strength to fracture origin suggests that stable growth of the intrinsic flaw precedes catastrophic fracture. Grainbridging that generates a rising bridging stress behind the crack-tip has been proposed as the cause for stable crack growth, which in turn reduces the strength dependency on initial flaw size. As a result of strong bridging by the acicular β-Si3N4 grains, ISR Si3N4 is characterized for high Weibull modulus. At elevated temperatures, the material's tensile creep rupture behavior follows the Monkman-Grant type plot. A tensile creep rate of -10−9s−1 at 1260°C/250 MPa, 1300°C/180 MPa, and 1350°C/90 MPa has been recorded. This relatively strong creep resistance is related to the sliding-resistance of the acicular grains and the properties of the amorphous film between the grains in ISR Si3N4.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lange, F. F., J. Am. Ceram. Soc. 62 (9-10), 428 (1979).Google Scholar
2. Li, C.-W. and Yamanis, J., Ceram. Eng. Sci. Proc. 10 (7-8), 632 (1989).Google Scholar
3. Li, C.-W., Lee, D.-J., and Lui, S.-C., J. Am. Ceram. Soc. 75 (7), 1777 (1992).Google Scholar
4. Whalen, P. J., Gasdaska, C. J., and Silvers, R. D., Ceram. Eng. Sci. Proc. 11 (7-8), 633 (1990).Google Scholar
5. Chantikul, P., Anstis, G. R., Lawn, B. R., and Marshall, D. B., J. Am. Ceram. Soc. 64 (9), 539 (1981).Google Scholar
6. Chantikul, P., Bennison, S. J., and Lawn, B. R., J. Am. Ceram. Soc. 73 (8), 2419 (1990).Google Scholar
7. Petrovic, J. J. and Mendiratta, M. G., in Fracture Mechanics Applied to Brittle Materials, ASTM STP 678, edited by Freiman, S. W. (American Society for Testing and Materials, (1979), p. 83 Google Scholar
8. Sung, J. and Nicholson, P. S., J. Am. Ceram. Soc. 71 (9), 788 (1988).Google Scholar
9. Seshadri, S. G. and Srinivasan, M., J. Am. Ceram. Soc. 64 (4), C68 (1981).Google Scholar
10. Ikeda, K. and Igaki, H., J. Am. Ceram. Soc. 70 (2) C29 (1987).Google Scholar
11. Kirchner, H. P., Gruver, R. M., Sotter, W. A., Mater. Sci. Eng. 22 (2), 147 (1976).Google Scholar
12. Usami, S., Kimoto, H., Takahashi, I., and Shida, S., Eng. Fract. Mech. 26 (4), 745 (1986).Google Scholar
13. Hoshide, T., Furuya, H., Nagase, Y., and Yamada, T., Int. J. Fract. 26 (4), 229 (1984).Google Scholar
14. Singh, J. P., Virkar, A. V., Shetty, D. K., and Gordon, R. S., J. Am. Ceram. Soc. 62 (3-4), 179 (1979).Google Scholar
15. Rice, R. W., Freiman, S. W., and Mecholsky, J. J., J. Am. Ceram. Soc. 63 (3-4), 129 (1980).Google Scholar
16. Bennison, S. J. and Lawn, B. R., J. Mater. Sci. 24 (9), 3169 (1989).Google Scholar
17. Shatty, D. K. and Wang, J. S., J. Am. Ceram. Soc. 72 (7), 1158 (1989).Google Scholar
18. Virkar, A. V., Shetty, D. K., and Evans, A. G., J Am. Ceram. Soc. 64 (3-4), C56 (1981).Google Scholar
19. Monkman, F.C. and Grant, N.J., in Deformation and Fracture at Elevated Temperatures, eds., Grant, N.J. and Mullendore, A.W., The M.I.T. Press Cambridge, MA (1965).Google Scholar
20. Wiederhorn, S.M., Hockey, B.J., Cranmer, D.C., Roberts, D.E. and Krause, R., in Preprints of the Ann. Auto. Technology Dev. Contractors' Coordination Meeting, U.S. Dept. of Energy, 1991.Google Scholar
21. Raj, R., J. Am. Ceram. Soc. 65 (3), C46 (1982).Google Scholar
22. Beerd, W., Phil. Trans. R. Soc. Lond. A. 288, 177 (1978).Google Scholar
23. Li, J.H. and Uhlmann, D.R., J. Non Crstall. Solids, 3, 127 (1970).Google Scholar
24. Simmons, J.H., Mohr, R.K. and Montrose, C.J., J. Appl. Phys. 53 (6), 4075 (1982).Google Scholar