Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T14:24:27.275Z Has data issue: false hasContentIssue false

Deep Levels and Drift Mobility Measurements in Hydrogenated Amorphous Silicon

Published online by Cambridge University Press:  26 February 2011

E. A. Schiff
Affiliation:
Department of Physics, Syracuse University, Syracuse, NY 13244-1130 USA
M. A. Parker
Affiliation:
Department of Physics, Syracuse University, Syracuse, NY 13244-1130 USA
K. A. Conrad
Affiliation:
Department of Physics, Syracuse University, Syracuse, NY 13244-1130 USA
Get access

Abstract

Drift-mobility measurements in undoped amorphous hydrogenated silicon (a-Si:H) are reviewed with emphasis on the effects of deep levels (principally the D or dangling bond defect) on the electron drift mobility. An outline of several techniques for measuring drift mobilities is also given to establish their relationships to the transient drift-mobility function. µ(t). Three aspects of the electron µ(t) in undoped a-Si:H are described in detail: (i) anisotropy at long times, requiring a distinction between axial electric fields (parallel to the growth axis) and planar fields normal to it, (ii) the D center deep-trapping cutoff observed in the axial µ(t), and (iii) D center multiple-trapping at long times in the planar drift-mobility. Microstructure effects which might account for the electron drift-mobility are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Mott, N. F., Conduction in Non-Crystalline Materials (Oxford University Press, New York, 1987).Google Scholar
2 Marshall, J. M., Berkin, J., and Main, C., Phil. Nag. B 56, 641 (1987).Google Scholar
3 Tiedje, T., in The Physics of Hydrogenated Amorphous Silicon II, edited by Joannopoulos, J. D. and Lucovsky, G. (Springer-Verlag, New York, 1984),Google Scholar
4 Street, R. A., J. Non-Cryst. Solids 77&78, 1 (1985).Google Scholar
5 Parker, M. A. and. Schiff, E. A.,. Physs. Rev. B, in press (1988).Google Scholar
6 Pandya, R., and A\Schiff, E.A., and Conrad, K. A., J. Non-Cryst. Solids 66, 193 (1984)Google Scholar
7 Silver, M., Winborne, G., Adler, D., and Canella, V., Appl. Phys. Lett. 50, 983 (1987).Google Scholar
8 Orenstein, J., Kastner, M., and Vaninov, V., Phil. Mag. B 46, 23 (1982).Google Scholar
9 Tiedje, T., Abeles, B., and Cebulka, J. M, Solid State Comm. 47, 493 (1983).Google Scholar
10 LeComber, P. G. and Spear, W., Phil. Mag. B 53, Li (1986).Google Scholar
11 Adler, D., Silver, M., Shaw, M. P., and Canella, V., in Materials Issues for Amorphous Semiconductor Technology, edited by D., Adler, Y., Hamakawa, and A., Madan (Materials Research Society, Pittsburg, 1986), p. 113.Google Scholar
12 Schiff, E. A., in Tetrahedrally-Bonded Amorphous Semiconductors, edited by D., Adler and H., Fritzsche (Plenum Press, New York, 1985), p. 357.Google Scholar
13 Kunst, M. and Werner, A., J. Appl. Phys. 58, 2236 (1985).Google Scholar
14 Eric Snow and Silver, M., J. Non-Cryst. Solids 77&78, 451 (1985).Google Scholar
15 Schiff, E. A., Phil. Mag. Lett. 55, 87 (1987).Google Scholar
16 Oheda, H., Phil. Mag. B 52, 857 (1985).Google Scholar
17 Takada, J. and Fritzsche, H., Phys. Rev. B 36, 1710 (1987).Google Scholar
18 Street, R. A., Phil. Mag. B 49, L15 (1984).CrossRefGoogle Scholar
19 Conrad, K. A. and Schiff, E. A., Solid State Comm. 60, 291 (1986).Google Scholar
20 Cohen, J. D., in Semiconductors and Semimetals 24C, edited by Pankove, J. I. (Academic Press, New York, 1984), p. 9.Google Scholar
21 Pandya, R. and Schiff, E. A., J. Non-Cryst. Solids 77&78, 623 (1985).Google Scholar