Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T14:13:15.272Z Has data issue: false hasContentIssue false

Deep Trap Characterization In GaN Using Thermal And Optical Admittance Spectroscopy

Published online by Cambridge University Press:  10 February 2011

A. Krtschil
Affiliation:
Institute of Experimental Physics, University of Magdeburg, PO Box 4120, 39016 Magdeburg
H. Witte
Affiliation:
Institute of Experimental Physics, University of Magdeburg, PO Box 4120, 39016 Magdeburg
M. Lisker
Affiliation:
Institute of Experimental Physics, University of Magdeburg, PO Box 4120, 39016 Magdeburg
J. Christen
Affiliation:
Institute of Experimental Physics, University of Magdeburg, PO Box 4120, 39016 Magdeburg
U. Birkle
Affiliation:
Institute of Solid State Physics, University of Bremen, PO Box 330440, 28334 Bremen
S. Einfeldt
Affiliation:
Institute of Solid State Physics, University of Bremen, PO Box 330440, 28334 Bremen
D. Hommel
Affiliation:
Institute of Solid State Physics, University of Bremen, PO Box 330440, 28334 Bremen
M. Topf
Affiliation:
1. Institute of Physics, University of Giessen, Heinrich Buff Ring 16, 35392 Giessen
B. K. Meyer
Affiliation:
1. Institute of Physics, University of Giessen, Heinrich Buff Ring 16, 35392 Giessen
Get access

Abstract

Deep defect levels and the optical as well as thermal transitions of carriers from the levels into the corresponding bands were analyzed using Thermal and Optical Admittance Spectroscopy. High resistivity GaN-layers grown by MBE and heterostructures consisting of n-type GaN-layers grown with Low Pressure Chemical Vapor Deposition on 6H-SiC substrates are investigated. In the MBE-grown GaN layers we determine deep electron traps with thermal activation energies of EA=(0.45±0.04)eV and EA=(0.65±0.03)eV. Furthermore, three different kinds of optical transitions were distinguished by Optical Admittance Spectroscopy: near band gap transitions including the transition between the valence band and a shallow donor 50meV below the conduction band, a peak at 2.1eV associated with the yellow photoluminescence band and various deep level-band transitions in the infrared region.

The high sensitivity of the TAS to interface defect states was used to investigate GaN/SiC heterostructures. We found an interface defect state at 70 … 90meV. Furthermore, one level was obtained originating from the epitaxial GaN-layer having an activation energy of 63±3meV. A defect distribution was identified in the p-type SiC-substrate with activation energies between 160meV and 180meV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Topf, M., Meister, D., Dirnstorfer, I., Steude, G., Fischer, S., Meyer, B.K., Krtschil, A., Witte, H., Christen, J., Kampen, T.U., Mönch, W.: Proc. E-MRS'97 and ICAM'97, 1997, Strasbourg, FranceGoogle Scholar
[2] Barbolla, J., Duenas, S., Bailon, L.: Sol. State Electron. 35 (1992) 3, 285Google Scholar
[3] Götz, W., Johnson, N.M., Street, R.A., Amano, H., Akasaki, I.: Appl.Phys.Lett. 66 (1995), 1340 Google Scholar
[4] Lee, W.I., huang, T.C., Guo, J.D., Feng, M.S.: Appl. Phys. Lett. 67 (1995) 12, 1721Google Scholar
[5] Chung, B-C., Gershenzon, M.: J. Appl. Phys. 72 (1992), p. 651 Google Scholar
[6] Monemar, B.: Phys. Rev. B 10 (1974), p.676 Google Scholar
[7] Hacke, P., Okushi, H.: Appl. Phys. Lett. 71 (1997) 4, 524Google Scholar
[8] Look, D.C.: Proceed. DRIP VII, 1997, Templin, GermanyGoogle Scholar
[9] Hoffmann, D.M., Kovalev, D., Steude, G., Meyer, B.K., Hoffmann, A., Eckey, L., Heitz, R., Detchprohm, T., Amano, H., Akasaki, I.: Phys. Rev. B 52 (1995), p.16702 Google Scholar
[10] Haase, D., Schmidt, M., Kürner, W., Dörnen, A., Härle, V., Scholz, F., Burkard, M., Schweizer, H.: Appl. Phys. Lett. 69 (1996) 17, 2525Google Scholar
[11] Hacke, P., Nakayama, H., Detchprohm, T., Hiramatsu, K., Sawaki, N.: Appl. Phys. Lett. 68 (1996) 19, 1362Google Scholar
[12] Götz, W., Johnson, N.M., Amano, H., Akasaki, I.: Appl. Phys. Lett. 65 (1994) 4, 463Google Scholar
[13] Krispin, P.: Appl. Phys. Lett. 70 (1997), p. 1432 Google Scholar
[14] Kuznetsov, N.I., Gubenco, A.E., Nikolaev, A.E., Melnik, Yu. V., Blashenkov, M.N., Nikitina, I.P., Dmitriev, V.A.: Mater. Sci. Engineering B46 (1997) 7478 Google Scholar