Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-01T06:05:27.141Z Has data issue: false hasContentIssue false

Deep UV Photodetectors fabricated from CVD Single Crystal Diamond

Published online by Cambridge University Press:  31 January 2011

Mose Bevilacqua
Affiliation:
m.bevilaqua@ee.ucl.ac.uk, University College London, London Centre for Nanotechnology, London, United Kingdom
Richard B. Jackman
Affiliation:
r.jackman@ucl.ac.uk
Get access

Abstract

Deep UV detection using a single crystal diamond (SCD) substrate without a homoepitaxial layer has been demonstrated using a defect passivation treatment. Despite evidence of surface damage on the SCD, the treatments lead to highly effective photoconductive devices, displaying six-orders of discrimination between deep UV and visible light and a responsivity as high as 100A/W, equivalent to an external quantum efficiency of 700, similar to the best values for devices based on high quality homoepitaxial layers. Impedance spectroscopic investigations suggest that the treatment used reduces the impact of less resistive surface material, most likely defects left from substrate polishing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Landstrass, M. I., Plano, M. A., Moreno, M. A. and McWilliams, S., Pan, L. S., Kania, D. R. and Han, S. Diamond and Related Materials, 2, 1033 (1993)Google Scholar
2 Liao, M. and Koide, Y., Appl. Phys. Letts., 89, 113509 (2006)Google Scholar
3 McKeag, R. D., Chan, S. S. M., and Jackman, R. B., Appl. Phys. Letts., 67, 2117 (1995)Google Scholar
4 Binari, S. C., Marchywka, M., Koolbeck, D. A., Dietrich, H. B., and Moses, D., Diam. Relat. Mater. 2, 1020 (1993)Google Scholar
5 Salvatori, S., Vincenzoni, R., Rossi, M.C., Galluzzi, F., Pinzari, F., Cappelli, E., Ascarelli, P., Diamond and Related Materials 5, 775 (1996)Google Scholar
6 Salvatori, S., Pace, E., Rossi, M.C., Galluzzi, F., Diamond and Related Materials 6, 361 (1997)Google Scholar
7 Salvatori, S., Rossi, M.C., Galluzzi, F., Pace, E., Ascarelli, P., Marinelli, M. Diamond and Related Materials 7, 811 (1998)Google Scholar
8 Polyakov, V.I., Rukovishnikov, A., Rossukanyi, N.M., Krikunov, A.I., Ralchenko, V.G., Smolin, A.A., Konov, V.I., Varnin, V.P., Teremetskay, I.G. Diamond and Related Materials 7, 821 (1998)Google Scholar
9 Salvatori, S., Rossi, M.C., Riedel, D., Castex, M.C. Diamond Relat. Mater. 8, 871 (1999)Google Scholar
10 Lefeuvre, E., Achard, J., Castex, M.C., Schneider, H., Beuille, C., Tardieua, A. Diamond and Related Materials 12, 642 (2003)Google Scholar
11 McKeag, R. D. and Jackman, R. B. Diamond and Related Materials 7, 513 (1998)Google Scholar
12 Lansley, S. P., Gaudin, O., Whitfield, M. D., McKeag, R. D., Rizvi, N. and Jackman, R. B., Diamond and Related Materials 9, 195 (2000)Google Scholar
13 Lansley, S. P., Gaudin, O., Ye, H., Rizvi, N., Whitfield, M. D., McKeag, R. D., Jackman, R. B. Diamond and Related Materials 11, 433 (2002)Google Scholar
14See, for example, www.e6cvd.comGoogle Scholar
15 Brescia, R., Sio, A. De, Donato, M. G., Faggio, G., Messina, G., Pace, E., Pucella, G., Santangelo, S., Sternschulte, H., and Rinati, G. Verona phys. stat. sol. (a) 199, 113 (2003)Google Scholar
16 Teraji, T., Yoshizaki, S., Wada, H., Hamada, M., Ito, T. Diamond and Related Materials 13, 858 (2004)Google Scholar
17 Balducci, A., Sio, A. De, Marinelli, Marco, Milani, E., Morgada, M.E., Pace, E., Prestopino, G., Pucella, G., Scoccia, M., Tucciarone, A., Verona-Rinatia, G. Diamond & Related Materials 14, 1980 (2005)Google Scholar
18 Balducci, A., Marinelli, Marco, Milani, E., Morgada, M. E., Tucciarone, A., and Verona-Rinati, G., Angelone, M. and Pillon, M. Appl. Phys. Letts., 86, 193509 (2005)Google Scholar
19 Iwakaji, Y., Kanasugi, M., Maida, O. and Ito, T. Appl. Phys. Letts., 94, 223511 (2009)Google Scholar
20 Baral, B, Chan, SSM and Jackman, RB J. Vac. Sci. & Technol., A14, 2303 (1996)Google Scholar
21 Williams, OA and Jackman, RB J. Appl. Phys., 96, 3742 (2004)Google Scholar
22 Ye, H., Williams, O. A., Jackman, R. B., Rudkin, R., and Atkinson, A. Phys. Status Solidi A-Appl. Res. 193, 462 (2002)Google Scholar
23 Ye, HT, Jackman, RB, Hing, P, J. Appl. Phys., 94, 7878 (2003)Google Scholar
24 Curat, S, Ye, H, Gaudin, O, Jackman, RB, Koizumi, S J. Appl. Phys., 98, 073701 (2005)Google Scholar
25 Hench, L. L. and West, J. K., Principles of Electronic Ceramics (Wiley, New York, 1989), Chapter 5Google Scholar
26 Bube, R. H., Photoelectronic Properties of Semiconductors (Cambridge, New York, 1992, p. 32)Google Scholar
27 Brescia, R., Sio, A. De, Pace, E. and Castex, M.C. Diamond and Related Materials 13, 938 (2004)Google Scholar
28 Gaudin, O., Watson, S., Lansley, S. P., Looi, H.J., Whitfield, M. D. and Jackman, R. B. Diamond and Related Materials 8, 886 (1999)Google Scholar