Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T07:07:35.261Z Has data issue: false hasContentIssue false

Defect Creation and Photoablation in Stoichiometric and Sub-Stoichiometric SiO2

Published online by Cambridge University Press:  28 February 2011

R. A. B. Devine
Affiliation:
Cnet, B.P. 98, 38243Meylan Cedex, France
C. Fiori
Affiliation:
Cnet, B.P. 98, 38243Meylan Cedex, France
Get access

Abstract

It is demonstrated that microscopic point defects can be created in amorphous silica using pulsed ultraviolet irradiation (λ = 248 nm) at energy densities ∼ 100 times less than those normally estimated to lead to damage creation. Identification of the physical character of the defects has been made using electron spin resonance spectroscopy and electrical measurement techniques. Continued irradiation of the SiO2 is found to lead to photoablation. Results obtained for bulk dry SiO2, thermal SiO2 and vacuum deposited SiOx are presented. The important role of non-stoichiometry (defect structure) in the process of photoablation is clearly manifested by comparison of the results obtained for the different types of SiO2. Possible physical mechanisms involved are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Friebele, E.J., Askins, C.G., Gingerich, M.E. and Long, K.J., Nucl. Inst, and Meth. B1 355 (1984)CrossRefGoogle Scholar
2. Stone, J., Wiesenfeld, J.M., Marcuse, D., Burrus, C.A. and Yang, S., Appl. Phys. Lett. 47 328 (1985)CrossRefGoogle Scholar
3. Bloembergen, N., IEEE J. Quant. Elect. QE 10 375 (1975)CrossRefGoogle Scholar
4. Smith, W. Lee, Opt. Eng. 17 489 (1978)Google Scholar
5. Mc Grath, T., Sol. State Technology Dec. 1983 p 165Google Scholar
6. Milam, D., Lowdermilk, W. H., Rainer, F., Swain, J.E., Carniglia, C.K. and Tuttle Hart, T., Appl. Opt. 21 3689 (1982)CrossRefGoogle Scholar
7. Howard Lowdermilk, W. and Milam, D., SPIE 476 143 (1984)Google Scholar
8. Philipp, H.R., J. Non-Cryst. Solids 810 627 (1972)CrossRefGoogle Scholar
9. Sze, S.M., Physics of Semiconductor Devices (John Wiley and Sons, New York 1981) Ch. 7 p 362 Google Scholar
10. Stapelbroek, M., Griscom, D.L., Friebele, E.J. and Sigel, G.H. Jr., J. Non-Cryst. Solids 32 313 (1979)CrossRefGoogle Scholar
11. Yip, K.L. and Fowler, W.B., Phys. Rev. B 11 2327 (1975)CrossRefGoogle Scholar
12. Devine, R.A.B., Fiori, C. and Robertson, J., to be publishedGoogle Scholar
13. O’Reilly, E.P. and Robertson, J., Phys. Rev. B 27 3780 (1983)CrossRefGoogle Scholar
14. Edwards, A.H. and Beall, W. Fowler, Phys. Rev. B 26 6649 (1982)CrossRefGoogle Scholar
15. Born, M. and Wolf, E., Principles of Optics, (Pergamon NY 1983) p. 88 Google Scholar
16. Raizer, Yu. P., Sov. Phys. USPEKHI 8 650 (1966)CrossRefGoogle Scholar
17. Lee Smith, W., Bechtel, J.H. and Bloembergen, N., Phys. Rev. B 15 4039 (1977)CrossRefGoogle Scholar
18. Brawer, S., Phys. Rev. B 20 3422 (1979)CrossRefGoogle Scholar
19. Soileau, M.J., Williams, W.E., Van Stryland, E.W., Boggess, T.F. and Smirl, A.L., Opt. Eng. 22 424 (1983)CrossRefGoogle Scholar
20. Merkle, L.D., Koumvakalis, N. and Bass, M., J. Appl. Phys. 55 772 (1984)CrossRefGoogle Scholar
21. EerNisse, E.P. and Norris, C.B., J. Appl. Ph. 45 5196 (1974)CrossRefGoogle Scholar
22. Fiori, C. and Devine, R.A.B., Physical Rev. (1986)Google Scholar
23. Galeener, F., Sol. State Comm. 44 1037 1982 CrossRefGoogle Scholar
24. Holzenkamfer, E., Richter, F-W., Stuke, J. and Voget-Grote, U., J. Non-Cryst. Sols. 32 327 (1979)CrossRefGoogle Scholar
25. Nesbit, L.A., Appl. Phys. Lett. 46 38 (1985)CrossRefGoogle Scholar