Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T01:19:01.000Z Has data issue: false hasContentIssue false

Defect Generation and Motion in Polyethylene-Like Crystals, Analyzed by Simulation With Supercomputers*

Published online by Cambridge University Press:  26 February 2011

Bernhard Wunderlich
Affiliation:
Department of Chemistry, The University of Tennessee, Knoxville, TN 37996–1600 and the Division of Chemistry, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6197
A. Xenopoulos
Affiliation:
Department of Chemistry, The University of Tennessee, Knoxville, TN 37996–1600 and the Division of Chemistry, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6197
D. W. Noid
Affiliation:
Department of Chemistry, The University of Tennessee, Knoxville, TN 37996–1600 and the Division of Chemistry, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6197
B. G. Sumpter
Affiliation:
Department of Chemistry, The University of Tennessee, Knoxville, TN 37996–1600 and the Division of Chemistry, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6197
Get access

Abstract

Defects in polymers were observed by high resolution electron microscopy and inferred from their mechanical and dielectrical behavior. The details of their generation was not known, however, in the past. During the last few years we have been able to extend the molecular dynamics simulation of polyethylene to crystals containing up to 6100 atoms and to times as long as 100 ps. The major observation was that single bond rotations of more than 90° become possible already more than 100 K below the melting temperature. These defects have lifetimes of only a few ps. By coupling to kinks (2g1) they can extend their lifetime considerably. Addition of a thermal, mechanical or dielectric free energy gradient to the thermally created defects seems to be able to account for the microscopic motion needed to explain the macroscopically observed annealing, deformations and relaxation effects. Key to the mechanical and dielectric properties is thus the existence of conformational disorder (condis crystal).

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

The contents of this paper were presented as paper K2.8 and poster K7.53 and expanded with a literature survey by A. X.

References

REFERENCES

[1] Wunderlich, B., Macromolecular Physics, Crystal Structure, Morphology, Defects. (Academic Press, New York, 1973).Google Scholar
[2] Wunderlich, B., Macromolecular Physics, Nucleation, Crystallization, Annealing. (Academic Press, New York, 1976).Google Scholar
[3] Wunderlich, B., Macromolecular Physics, Crystal Melting, (Academic Press, New York, 1980).Google Scholar
[4] See, for example, Tadokoro, H., Structure of Crystalline Polymers. (John Wiley and Sons, New York, 1979);Google Scholar
Miller, R. L, Crystallographic Data for Various Polymers in Polymer Handbook, edited by Brandrup, J. and Immergut, E. H. (John Wiley and Sons, New York, 1989); or Ref. [1].Google Scholar
[5] See, for example, Kröger, F. A., The Chemistry of Imperfect Crystals. (North-Holland Publ., Amsterdam, 1964);Google Scholar
or Shockley, W., Holloman, J. H., Maurer, R. and Seitz, F., eds., Imperfections in Nearly Perfect Crystals. (Wiley, New York, 1952).Google Scholar
[6] Wunderlich, B. and Poland, D., J. Polymer Sci. Part A, 1, 357 (1963).Google Scholar
[7] See, for example, Cheng, S. Z. D., Wu, Z. Q., and Wunderlich, B., Macromolecules, 20, 2801 (1987).Google Scholar
[8] See, for example, Geil, P. H., Polymer Single Crystals. (Wiley-Interscience, New York, 1963);Google Scholar
Woodward, A. E. Atlas of Polymer Morphology. (Hanser Publishers, Müinchen, 1988); or Ref. [1].Google Scholar
[9] Dawson, I. M. and Vand, V., Proc. Roy. Soc., A206, 555 (1951).Google Scholar
[10] Agar, A. W., Frank, F. C., and Keller, A., Phil Mag. 4, 32 (1959);CrossRefGoogle Scholar
Predecki, P. and Statton, W. O., J. Appl. Phys., 37, 4053 (1966).CrossRefGoogle Scholar
[11] Keith, H. D. and Passaglia, E., J. Res. Natl. Bur. Stand., 68A, 513 (1964).CrossRefGoogle Scholar
[12] Peterlin, A., J. Mat. Sci., 6, 490 (1971).Google Scholar
[13] See, for example, Reneker, D. H., J. Polym. Sci., 59, S39 (1962);Google Scholar
Schatzki, T. F., J. Polymer Sci., 57, 496 (1962);CrossRefGoogle Scholar
Pechhold, W., Blasenbrey, S., and Woerner, S., Kolloid, Z. Z. Polymere, 189, 14 (1963);CrossRefGoogle Scholar
Illers, K. H., Rheol. Acta, 3, 202 (1964);Google Scholar
McMahon, P. E., McCullough, R. L. and Schlegel, A. A., J. Appl. Phys., 38, 4123 (1967).Google Scholar
[14] Pechhold, W., Blasenbrey, S., and Woerner, S., Kolloid, Z. Z. Polymere, 189, 14 (1963);Google Scholar
Pechhold, W. and Blasenbrey, S., Kolloid, Z. Z. Polymere, 241, 955 (1970);CrossRefGoogle Scholar
Pechhold, W., Liska, E., Grossman, H. P., and Hägele, P. C., Pure Appl. Chem., 127 (1976).Google Scholar
[15] Hosemann, R., Z. Phys., 128, 1, 465 (1950);Google Scholar
Hosemann, R., and Wilke, W., Makromol. Chem., 118, 230 (1968); see also Ref. [1].Google Scholar
[16] Wilke, W., Colloid Polym. Sci, 261, 656 (1983).CrossRefGoogle Scholar
[17] Volkenstein, M. V., Configurational Statistics of Polymeric Chains. (Wiley-Interscience, New York, 1963);Google Scholar
Birshtein, T. M. and Ptitsyn, O. B., Conformations of Macromolecules. (Wiley-Interscience, New York, 1966);Google Scholar
Flory, P. J., Statistical Mechanics of Chain Molecules. (Wiley-Interscience, New York, 1969).CrossRefGoogle Scholar
[18] Zerbi, G., in Enc. Polym. Sci. Eng., edited by Mark, H. F., Bikales, N. M., Overberger, C. G., and Menges, G. (John Wiley and Sons, New York, 1985)1989.Google Scholar
[19] Wunderlich, B. and Grebowicz, J., Adv. Polymer Sci., 60/61, 1 (1984).Google Scholar
[20] Wunderlich, B., Möller, M., Grebowicz, J., and Baur, H., Conformational Motion and Disorder in Low and High Molecular Mass Crystals. (Springer Verlag, Berlin, 1988; Adv. Polymer Sci., Vol. 87).CrossRefGoogle Scholar
[21] Miller, K. J., Hollinger, H. B., Grebowicz, J., and Wunderlich, B., Macromolecules, 23, 3855 (1990).Google Scholar
[22] Reneker, D. H. and Mazur, J., Polymer, 24, 1387 (1983);Google Scholar
9, 3 (1988).Google Scholar
[23] Mansfield, M. L. and Boyd, R. H., J. Polym. Sci., Polym. Phys. Ed., 16, 1227 (1978).CrossRefGoogle Scholar
[24] Mansfield, M. L., Chem. Phys. Lett. 69, 383 (1980);Google Scholar
Skinner, J. L and Wolynes, P. G., J. Chem. Phys. 73, 4022 (1980);Google Scholar
Syi, J.-L. and Mansfield, M. L., Polymer, 29, 987 (1988).Google Scholar
[25] Boyd, R. H., Polymer, 26, 323, 1123 (1985).CrossRefGoogle Scholar
[26] Zerbi, G. and Longhi, G., Polymer, 29, 1827 (1988).Google Scholar
[27] Keller, A., Rep. Prog. Phys., 31, 623 (1968).Google Scholar
[28] Klug, A. and Franklin, R. E., Disc. Farad. Soc., 25, 104 (1958);Google Scholar
Wright, N. F., Bull. Am. Phys. Soc., 33, 248 (1988);Google Scholar
Heinonen, O. and Taylor, P. L., Polymer, 30, 585 (1989).Google Scholar
[29] Klein, M.L., Ann. Rev. Phys. Chem., 36, 525 (1985).Google Scholar
[30] Shampine, L. F. and Gordon, M. K., Computer Solutions of Ordinary Differential Equations: The Initial Value Problem. (Freeman, San Francisco, 1975).Google Scholar
[31] Noid, D. W., Sumpter, B. G., Wunderlich, B. and Pfeffer, G. A., J Comp. Chem., 11, 236 (1990).Google Scholar
[32] Weber, T. A., J Chem. Phys., 70, 4277 (1979);CrossRefGoogle Scholar
69, 2347 (1978).Google Scholar
[33] Sorensen, R. A., Liam, W. B., and Boyd, R. H., Macromolecules, 21, 194 (1988).Google Scholar
[34] Sumpter, B. G., Noid, D. W., and Wunderlich, B., J. Chem. Phys., xx, yyyy (1990).Google Scholar
[35] Sumpter, B. G. and Thompson, D. L., J. Chem. Phys., 87, 5809 (1987);CrossRefGoogle Scholar
Chem. Phys. Lett., 153, 243 (1988);Google Scholar
Getino, C., Sumpter, B. G., Santamaria, J., and Ezra, G. S., J Phys. Chem., 93, 3877 (1989);Google Scholar
Getino, C., Sumpter, B. G., Santamaria, J., and Ezra, G. S., J Phys. Chem., 94, 3995 (1990).Google Scholar
[36] Noid, D. W., Sumpter, B. G., and Wunderlich, B., Macromolecules, 23, 644 (1990).Google Scholar
[37] Noid, D. W., Sumpter, B. G., Varma-Nair, M. and Wunderlich, B., MakromoL Chem., Rapid Commun., 10, 377 (1989);CrossRefGoogle Scholar
Sumpter, B. G., Noid, D. W. and Wunderlich, B., Polymer, 31, 1254 (1990).CrossRefGoogle Scholar
[38] Roy, R., Sumpter, B. G., Noid, D. W. and Wunderlich, B., J Phys. Chem., 94, 5720 (1990);Google Scholar
Noid, D. W., Sumpter, B. G., and Wunderlich, B., Anal Chim. Acta, 235, 143 (1990);Google Scholar
Roy, R., Sumpter, B. G., Pfeffer, G., Gray, S. K., and Noid, D W., Comp. Phys. Rep. (in press);Google Scholar
Sumpter, B. G., Noid, D. W., and Wunderlich, B., Polymer, 31, 1254, (1990);Google Scholar
Noid, D. W. and Pfeffer, G. A., J. Polymer Sci., Phys. Chem. Ed., 27, 2321 (1989).Google Scholar
[39] Sumpter, B. G., Voth, G. A., Noid, D. W. and Wunderlich, B., J. Chem. Phys., 93, 6081 (1990).Google Scholar
[40] Gelb, A., Sumpter, B. G. and Noid, D. W., J. Phys. Chem., 94, 809; (1990);Google Scholar
Gelb, A., Sumpter, B. G., and Noid, D. W., Chem. Phys. Lett., 169, 103 (1990);Google Scholar
Nyden, M. and Noid, D. W., J. Phys. Chem., to appear (1990).Google Scholar
[41] Sumpter, B. G., Noid, D. W., Wunderlich, B. and Cheng, S. Z. D., Macromolecules, to be published (1990).Google Scholar
[42] Sumpter, B. G., Xenopoulos, A., Noid, D. W., and Wunderlich, B., in preparation.Google Scholar
[43] Xenopoulos, A., Noid, D. W., Sumpter, B. G., and Wunderlich, B., Makromol Chem., 191, xyz (1990).Google Scholar
[44] Noid, D. W., Koszykowski, M. L, and Marcus, R. A., Ann. Rev. Phys. Chem., 21, 261 (1981).Google Scholar
[45] Noid, D. W., Sumpter, B. G., Wunderlich, B., and Boyd, R. H., Macromolecules, to be published.Google Scholar
[46] Noid, D. W., Sumpter, B. G., and Wunderlich, B., Polymer Communications, 31, 304 (1990).Google Scholar
[47] Noid, D. W., Sumpter, B. G. and Wunderlich, B., in preparation.Google Scholar