Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-14T04:53:51.305Z Has data issue: false hasContentIssue false

Defect Microstructure of Thin Wurtzite GaN Films Grown by MBE

Published online by Cambridge University Press:  21 February 2011

B.N. Sverdlov
Affiliation:
Materials Research Laboratory and Coordinated Science Laboratory, University of Illinois, 104 S. Goodwin Ave., Urbana, IL 61801
A. Botchkarev
Affiliation:
Materials Research Laboratory and Coordinated Science Laboratory, University of Illinois, 104 S. Goodwin Ave., Urbana, IL 61801
G.A. Martin
Affiliation:
Materials Research Laboratory and Coordinated Science Laboratory, University of Illinois, 104 S. Goodwin Ave., Urbana, IL 61801
A. Salvador
Affiliation:
Materials Research Laboratory and Coordinated Science Laboratory, University of Illinois, 104 S. Goodwin Ave., Urbana, IL 61801
H. MorkoÇ
Affiliation:
Materials Research Laboratory and Coordinated Science Laboratory, University of Illinois, 104 S. Goodwin Ave., Urbana, IL 61801
S.-C.Y. Tsen
Affiliation:
Department of Physics and Astronomy and Center for Solid State Science, Arizona State University, Tempe, AZ 85287
David J. Smith
Affiliation:
Department of Physics and Astronomy and Center for Solid State Science, Arizona State University, Tempe, AZ 85287
Get access

Abstract

Thin films of wurtzite GaN have been grown by molecular beam epitaxy on 6H SiC (basal plane), Si {111} and sapphire (c-plane) substrates with and without various buffer layers. The defect microstructure of the films and the substrate/buffer/GaN interfacial quality have been characterized by cross-sectional transmission electron microscopy. The morphology was dominated by threading defects that originated at the substrate/buffer and/or buffer/film interfaces. Typical defect densities dropped rapidly with distance from the substrate but remained ∼108–109/cm2, depending on the particular substrate, for film thicknesses approaching one micron or more. The best quality films were grown at 770°C on sapphire with A1N buffer layers, and had X-ray rocking curve full-width at half-maximum values of ∼ 55arc-sec.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Morkoc, H., Strite, S., Gao, G.B., Lin, M.E., Sverdlov, B. and Burns, M., J. Appl. Phys. 76, 1363 (1994).Google Scholar
2 Davis, R.F., Proc. IEEE 79, 702 (1991).Google Scholar
3 Lilienthal-Weber, Z., Sohn, H., Newman, N. and Washburn, J., J. Vac. Sci. Tech. B13, 1578 (1995).Google Scholar
4 Smith, D.J., Chandrasekhar, D., Sverdlov, B., Botchkarev, A., Salvador, A. and Morkoç, H. Appl. Phys. Lett. 67, 1830 (1995).Google Scholar
5 Fertitta, K.G., Holmes, A.L., Neff, J.G., Ciuba, F.J. and Dupuis, R.D., Appl. Phys. Lett. 65, 1823 (1994).Google Scholar
6 Ponce, F.A., Kruser, B.S., Major, J.S., Plano, W.E. and Welch, D.F., Appl. Phys. Lett. 67, 410(1995).Google Scholar
7 Kapolnek, D., Wu, X.H., Heying, B., Keller, S., Keller, B.P., Mishra, U.K., DenBaars, S.P. and Speck, J.S., Appl. Phys. Lett. 67, 1541 (1995).Google Scholar
8 Strite, S., Ruan, J., Li, Z.G., Manning, N., Salvador, A., Chen, H., Smith, D.J., Choyke, W.J., and Morkoç, H., J. Crystal Growth, 127, 204 (1994)Google Scholar
9 Martin, G.A., Sverdlov, B., Botchkarev, A., Morkoç, H., Smith, D.J., Tsen, S.-C. Y., Thompson, W.H. and Nayfeh, M.H., these proceedings.Google Scholar
10 Zhu, Q., Botchkarev, A., Kim, W., Aktas, O., Sverdlov, B., Morkoç, H., Tsen, S.-C. Y. and Smith, D.J., Appl. Phys. Lett, submitted, Nov. 1995.Google Scholar
11 Sverdlov, B.N., Martin, G.A., Morkoç, H. and Smith, D.J., Appl. Phys. Lett. 67, 2063 (1995).Google Scholar