Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T10:04:07.751Z Has data issue: false hasContentIssue false

Defect Structure and Properties by Junction Spectroscopy

Published online by Cambridge University Press:  28 February 2011

L. C. Kimerling
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07094
J. L. Benton
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07094
K. M. Lee
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07094
M. Stavola
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07094
Get access

Abstract

The application of transient junction current and capacitance techniques to the study of imperfection in semiconductor materials is reviewed. An array of perturbation techniques are described which allow direct determination of electronic and atomic structure, as well as electrical and physical properties. The methods are illustrated with silicon materials studies of the divacancy using Polarized Excitation Photocapacitance, the oxygen donor using Stress and Electric Field Modulated DLTS, dislocations using spatially resolved DLTS, and iron impurities employing Charge State Control of Structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kimerling, L. C., in Defects in Semiconductors, edited by Narayan, J. and Tan, T. Y. (North Holland, New York, 1981), p. 85.Google Scholar
[2] Watkins, G. D. and Corbett, J. W., Phys. Rev. 121, 1001 (1961).CrossRefGoogle Scholar
[3] Meese, J. M., Farmer, J. W., and Lamp, C. D., Phys. Rev. Lett. 51, 1286 (1983).Google Scholar
[4] Frenkel, J., Phys. Rev. 54, 647 (1938).CrossRefGoogle Scholar
[5] Martin, P. A., Streetman, B. G., and Hess, K., J. Appl. Phys. 52, 7409 (1981).CrossRefGoogle Scholar
[6] Kimerling, L. C. and Benton, J. L., Appl. Phys. Lett. 39, 410 (1981).CrossRefGoogle Scholar
[7] Benton, J. L., Kimerling, L. C., and Stavola, M., Physica 116B, 271 (1983).Google Scholar
[8] Benton, J. L., Lee, K. M., Freeland, P. E., and Kimerling, L. C., J. Electronic Materials 14b, 647 (1985).Google Scholar
[9] Stavola, M., Lee, K. M., Nabity, J. C., Freeland, P. E., and Kimerling, L. C., Phys. Rev. Lett. 54, 2639 (1985).CrossRefGoogle Scholar
[10] Lee, K. M., Trombetta, J. M., and Watkins, G. D., these proceedings.Google Scholar
[11] Mircea, A. and Mitonneau, A., J. Phys. F. 40, L31 (1979).Google Scholar
[12] Ferenczi, G., Krispin, P., and Somogyi, M., J. Appl. Phys. 54, 3902 (1983).CrossRefGoogle Scholar
[13] Watkins, G. D. and Corbett, J. W., Phys. Rev. 138A, 543 (1965).CrossRefGoogle Scholar
[14] Cheng, L. J., Corelli, J. C., Corbett, J. W., and Watkins, G. D., Phys. Rev. 152, 761 (1966).CrossRefGoogle Scholar
[15] Kalma, A. H. and Corelli, J. C., Phys. Rev. 173, 734 (1968).CrossRefGoogle Scholar
[16] Kimerling, L. C., in Radiation Effects in Semiconductor 1976, Inst. Phys. Conf. Ser. 31, edited by Urli, N. B. and Corbett, J. W. (Institute of Physics, London, 1977) p. 221.Google Scholar
[17] Stavola, M. and Kimerling, L. C., J. Appl. Phys. 54, 3897 (1983).CrossRefGoogle Scholar
[18] Kimerling, L. C. and Patel, J. R., Appl. Phys. Lett. 34, 73 (1979).Google Scholar
[19] Kimerling, L. C., Patel, J. R., Benton, J. L. and Freeland, P. E., in Defects and Radiation Effects in Semiconductors 1980, Inst. Phys. Conf. Ser. 59, edited by Hasiguti, R. R. (Institute of Physics, London, 1981) p. 401.Google Scholar
[20] Kimerling, L. C. and Benton, J. L., Physica 116B, 297 (1983).Google Scholar