Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T17:00:51.788Z Has data issue: false hasContentIssue false

Defect Structures during Incubation Period of Void Swelling in Austenitic and Ferritic Alloys Studied by Positron Annihilation Spectroscopy

Published online by Cambridge University Press:  10 May 2013

S. Huang
Affiliation:
Research Reactor Institute, Kyoto University, Osaka, Japan
K. Miyawaki
Affiliation:
Research Reactor Institute, Kyoto University, Osaka, Japan
K. Tsujikawa
Affiliation:
Research Reactor Institute, Kyoto University, Osaka, Japan
M. Horiki
Affiliation:
Research Reactor Institute, Kyoto University, Osaka, Japan
T. Yoshiie
Affiliation:
Research Reactor Institute, Kyoto University, Osaka, Japan
K. Sato
Affiliation:
Research Reactor Institute, Kyoto University, Osaka, Japan
Q. Xu
Affiliation:
Research Reactor Institute, Kyoto University, Osaka, Japan
T.D. Troev
Affiliation:
Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Tzarigradsko, Chaussee 72, Sofia 1784, Bulgaria
Get access

Abstract

In order to understand the vacancy behavior during incubation period before steady state void swelling, positron annihilation lifetime measurements was performed after isochronal annealing of austenitic stainless steel (Ti added modified SUS316SS) and ferritic stainless steel (F82H) irradiated by neutrons and electrons to a dose of 0.2 dpa. By electron and neutron irradiations below 363 K, vacancies and nano-voids containing of few vacancies were formed in both alloys. By increasing annealing temperatures, the lifetime decreased without forming nano-voids. The change of lifetime during the annealing indicated the formation and growth of staking fault tetrahedra (Ti added modified SUS316SS) and the annihilation of vacancies at precipitates (F82H).

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amodeo, R. J., Ghoniem, N. M., Nucl. Eng. Design/Fusion 2 (1985) 97.CrossRefGoogle Scholar
Tokiwai, M., Horie, M., Kano, K., Fujiwara, M., J. Nucl. Mater., 204 (1993) 56.CrossRefGoogle Scholar
Saroja, S., Dasgupta, A., Divakar, R., Raju, S., Mohandas, E., Vijayalakshmi, M., Rao, K. B. S., Raj, B., J. Nucl. Mater., 409 (2011) 131.CrossRefGoogle Scholar
Tanigawa, H., Shiba, K., Sakasegawa, H., Hirose, T., Jitsukawa, S., Fusion Engineering and Design 86 (2011) 2549.CrossRefGoogle Scholar
Stoller, R.E., Golubov, S.I., Domain, C., Becquart, C.S., dJournal of Nuclear Materials 382, 77 (2008).CrossRefGoogle Scholar
Surh, M. P., Sturgeon, J. B., Wolfer, W. G., J. Nucl. Mater., 378, 86 (2008).CrossRefGoogle Scholar
Yoshiie, T., Cao, X.Z., Xu, Q., Sato, K., Troev, T. D., Phys. Status Solidi C 6, 2333 (2009).CrossRefGoogle Scholar
Yoshiie, T., Cao, X.Z., Sato, K., Miyawaki, K., Xu, Q., J. Nucl. Mater., 417, 968 (2011).CrossRefGoogle Scholar
Hashimoto, N., Wakai, E., Robertson, J. P., Sawai, T., Hishimura, A., J. Nucl. Mater., 280, 186 (2000).CrossRefGoogle Scholar
Brandt, W., Dupasquier, A., Positron Solid-State Physics, North-Holland, Amsterdam, 1983.Google Scholar
Dupasquier, A., Mills, A. P. Jr., Positron Spectroscopy of Solids, IOS Press, Amsterdam, 1995.Google Scholar
Shivachev, B.L., Troev, T., Yoshiie, T., J. Nucl. Mater. 306, 105 (2002).CrossRefGoogle Scholar
Kuramoto, E., Tsutsumi, T., Ueno, K., Ohmura, M., Kamimura, Y., Comp. Mater. Sci., 14, 28 (1999).CrossRefGoogle Scholar
Ohkubo, H., Tang, Z., Nagai, Y., Hasagawa, M., Tawara, Y., Kiritani, M., Mater. Sci. Eng. A350, 92 (2003).Google Scholar
Was, G. S., Fundamentals of Radiation Materials Science, Springer, Berlin, New York, 2007, p405.Google Scholar
Yoshiie, T., Sato, K., Cao, X., Xu, Q., Horiki, M., Troev, T.D., J. Nucl. Mater., 429, 185 (2012).CrossRefGoogle Scholar
Kirkegaard, P., Olsen, J. V., Eldrup, M., Pedersen, N. J., Risø DTU, February 2009, ISBN 978-87-550-3691-8, 44 p, http://palsfit.dk/ .Google Scholar
Yoshiie, T., Hasegawa, M., Kojima, S., Sato, K., Saitoh, Y., Yamaguchi, S., Kiritani, M., J. Nucl. Mater., 179-181, 931 (1991) .CrossRefGoogle Scholar
Kiritani, M., Yoshiie, T., Kojima, S. and Satoh, Y., Radiation Effect. Defect. Solid. 113, 75 (1990).CrossRefGoogle Scholar
Latanison, R.M. and Ruff, A.W., JR, Metal. Trans. 2, 505 (1971) .CrossRefGoogle Scholar
Theory of Dislocations (2 nd ed.) Krieger Publishing Co. Malabar, Florida, 1992, p332.Google Scholar
King, H. W.. J. Mater. Sci., 1 (1966) 79.CrossRefGoogle Scholar
Hidalgo, C., Gonzalez-Doncel, G., Linderoth, S., Juan, J. S., Phys. Rev. B45, 7017 (1992).CrossRefGoogle Scholar
Sato, K., Yoshiie, T., Ishizaki, T., Xu, Q., Phys. Rev., B75, 094109 (2007).CrossRefGoogle Scholar