Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T07:06:10.258Z Has data issue: false hasContentIssue false

Deformation and Fracture Behavior of Tial

Published online by Cambridge University Press:  28 February 2011

C. L. Fu
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6114
M. H. Yoo
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6114
Get access

Abstract

First-principles total-energy calculations of the elastic constants, shear fault energies, and cleavage energies of TiAl are presented. We find a large elastic shear anisotropy along the [011] direction, and high APB energies due to the strong cohesion between Ti and Al layers. Shear faults of SISF, SESF, and twin boundary are predicted to be prevalent due to their low energies. The anomalous temperature dependence of flow stress is explained by the cross-slip pinning and fault dragging mechanisms. The intrinsic brittleness of TiAl is discussed in terms of the low mobility of 1/2[110] dislocations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kawabata, T., Kania, T., and Izumi, O., Acta Metall. 33, 1355, (1985).Google Scholar
2. Lipsitt, H. A., Shechtman, D., Schafrik, R. E., Metall. Trans. 6A, 1991 (1975).Google Scholar
3. Court, S. A., Vasudevan, V. K., and Fraser, H. L., Phil. Mag. A61, 141, (1990).Google Scholar
4. Hug, G., Loiseau, A., and Veyssiere, P., Phil. Mag. A57, 499, (1988).Google Scholar
5. Wimmer, E., Krakauer, H., Weinert, M., and Freeman, A. J., Phys. Rev. B24, 864 (1981); C. L. Fu, M. Weinert, and A. J. Freeman (to be published).Google Scholar
6. Stroh, A. N., Phil. Mag. 3, 625, (1958).Google Scholar
7. Schafrik, R. E., Metall. Trans. 8A, 1003 (1977).Google Scholar
8. Fu, C. L. and Yoo, M. H., Mat. Res. Soc. Symp. Proc. 133, 81, (1989).Google Scholar
9. Shechtman, D., Blackburn, M. J., and Lipsitt, H. A., Metall. Trans. 5, 2, (1974).Google Scholar
10. Yamaguchi, M., Umakoshi, Y., and Yamane, T., in Dislocations in Solids (University of Tokyo), 77 (1985).Google Scholar
11. Morinaga, M., Saito, J., Yukawa, N., and Adachi, H., Acta Metall. (1990).Google Scholar
12. Greenberg, B. F., Anisimov, V. I., and Gornostrirev, Yu N., Scripta Metall. 22, 859, (1988).Google Scholar
13. Fu, C. L., J. of Mater. Res. 5, 971, (1990).Google Scholar
14. Yoo, M. H., Fu, C. L., and Lee, J. K., Mat. Res. Soc. Symp. Proc. 133, 189, (1989).Google Scholar
15. Kawabata, T., Takezono, Y., Kanai, T., and Izumi, O., Acta Metall. 36, 963, (1988).Google Scholar
16. Yoo, M. H., J. Mater. Res. 4, 50, (1989).Google Scholar
17. Yoo, M. H., Scripta Metall. 20, 915 (1986); Acta Metall. 35, 1559, (1987).Google Scholar