Article contents
Degradation of Transparent Conductive Oxides, and the Beneficial Role of Interfacial Layers
Published online by Cambridge University Press: 31 May 2013
Abstract
The lifetime performance and reliability of photovoltaic (PV) modules are critical factors in their successful deployment. Interfaces in thin film PV, such as that between the transparent conductive oxide (TCO) electrode and the absorber layer, are frequently an avenue for degradation; this degradation is promoted by exposure to environmental stressors such as irradiance, heat and humidity. Understanding and suppressing TCO degradation is critical to improving stability and extending the lifetime. Commercially available indium tin oxide (ITO), fluorine doped tin oxide (FTO) and aluminum doped zinc oxide (AZO) were exposed to damp heat (DH), ASTM G154 cycle 4, and modified ASTM G154 for up to 1000 hours. The TCOs’ electrical and optical properties and surface energies were determined before and after each exposure and their relative degradation classified. Data demonstrate that AZO degraded most rapidly of all the TCOs, whereas ITO and FTO degraded at lower to non-quantifiable rates. One approach to suppress degradation could be to use interfacial layers (IFLs), including organofunctional silane layers, to modify the TCO. We modified the TCO surfaces using a variety of organofunctional silanes, and determined a range of surface energies could be obtained without affecting the electrical and optical properties of the TCO. Degradation studies of TCOs with a silane layer were also conducted. We found that an inhomogeneous silane layer was able to delay the resistivity increase for ITO in DH.
- Type
- Articles
- Information
- MRS Online Proceedings Library (OPL) , Volume 1537: Symposium B – Organic and Hybrid Photovoltaic Materials and Devices , 2013 , mrss13-1537-b06-101
- Copyright
- Copyright © Materials Research Society 2013
References
REFERENCES
- 4
- Cited by