No CrossRef data available.
Article contents
Demonstrating the Utility of Boron Based Precursor Molecules for Selective Area DepositIon in a Scanning Tunnelling Microscope
Published online by Cambridge University Press: 25 February 2011
Abstract
The scanning tunnelling microscope (STM) can be used to selectively deposit material from a gaseous precursor compound. Ultrasmall (less than a 100 nm across) spatial dimensions for selective area deposition may be achieved by this means. In this paper we outline a scheme forselecting and designing main group cluster compounds and organometallics for this type of selective area deposition using nido-decaborane(14) as an example.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1992
References
[1] Dowben, P.A., Spencer, J.T., and Stauf, G.T., Mat. Sci. Engin.
82, 297 (1989).CrossRefGoogle Scholar
[2] Christensen, C.D. and Latkin, V.M., Appl. Phys. Lett.
32, 254 (1978); R.M. Osgood, Ann. Rev. Phys. Chem. 34, 77 (1983); T.J. Chuang, Surf. Sci. Repts. 3, 1 (1983); D.J. Ehrlich and J.Y. Tsao, J. Vac. Sci. Technol. B1, 969 (1983).Google Scholar
[3] Laser Chemical Processing for Microelectronics, edited by Ibbs, K.G. and Osgood, R.M., Cambridge Studies in Modern Optics vol. 7, (Cambridge University Press, Cambridge, 1989); Laser and Particle Beam Chemical Processing for Micro-electronics, edited by D.J. Ehrlich, G.S. Higashi, and R.M. Osgood (Mater. Res. Soc. Proc. 101, Pittsburgh, PA 1988).Google Scholar
[4] Silver, R.M., Ehrichs, E.E., and deLozanne, A.L., Appl. Phys. Lett.
51, 247 (1987); E.E. Ehrichs, R.M. Silver, and A.L. deLozanne, J. Vac. Sci. Technol. A6, 540 (1988); E.E. Ehrichs, S. Yoon, and A.L. deLozanne, Appl. Phys. Lett. 53, 2287 (1988).Google Scholar
[5] McCord, M.A. and Pease, R.F.W., J. Vac. Sci. Technol.
B4, 86 (1986); J. Vac. Sci. Technol. B5, 430 (1987); J. Vac. Sci. Technol. 86, 293 (1988).Google Scholar
[6] Kim, Yoon-Gi, Dowben, P.A. and Spencer, J.T., J. Vac. Sci. Technol.
A7, 2796 (1989).Google Scholar
[7] Perkins, F. Keith, Rosenberg, R.A., Lee, Sunwoo and Dowben, P.A., J. Appl. Phys.
69, 4103 (1991).Google Scholar
[8] Rosenberg, R.A., Perkins, F.K., Mancini, D.C., Harp, G.R., Tonner, B.P., Lee, S. and Dowben, P.A., Appl. Phys. Lett.
58, 607 (1991).Google Scholar
[10] Avouris, Ph., Lyo, In-Whan, Bozso, F., and Kaxiras, E., J. Vac. Sci. Technol., A8, 3405 (1990).Google Scholar
[11] Perkins, F. Keith, Onellion, M., Lee, S., Li, D., Mazurowski, J. and Dowben, P.A., submitted.Google Scholar
[12] Kendall, D.S. and Lipscomb, W.N., Inorg. Chem.
12, 546 (1973); L.J. Gugenberger, J. Amer. Chem. Soc. 94, 114 (1972); A. Tippe and W.C. Hamilton, Inorg. Chem. 8, 464 (1969).Google Scholar
[13] Dewar, M.J.S., McKee, M.L., J. Am. Chem. Soc.
99, 4899 (1977); M.J.S. Dewar, M.L. McKee, H.S. Rzepa, J. Am. Chem. Soc. 100, 3607 (1978); M.J.S. Dewar, J. Friedheim, G. Grady, E.H. Healy, J.J.P. Stewart, Organometallics 5, 385 (1986). M.J.S. Dewar, H.S. Rzepa, J. Comp. Chem. 4, 158 (1983); J.J.P. Stewart, F.J. Seiler, Quantum Chem. Program Exch., Prgm. no. 549.Google Scholar
[14] Hitchcock, A.P., Wen, A.T., Lee, S., Glass, J.A., Spencer, J.T. and Dowben, P.A., in preparationGoogle Scholar
[15] Hosmane, N.S., Grimes, R.N., Inorg. Chem.
18, 3294 (1979); R.B. Maynard, L. Borodinsky, and R.N. Grimes, Inorg. Synthesis H2, 211 (1983); M.E. Fessler, J.T. Spencer, J.F. Lomax, R.N. Grimes, Inorg. Chem. 27, 3069 (1988).Google Scholar
[17] Higashi, G.S., Chabal, Y.J., Trucks, G.W., and Raghavachari, K., Appl. Phys. Lett.
56, 656 (1990).Google Scholar