Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-02T21:42:28.375Z Has data issue: false hasContentIssue false

Density Fluctuation in Coulombic Colloid Dispersion: Self-Assembly of Lipid A-Phosphates

Published online by Cambridge University Press:  01 February 2011

Henrich H. Paradies
Affiliation:
Hparadies@aol.com, The University of Salford, Joule Physics Laboratory, Materials Research Institute, The Crescent, Salford, M5 4 WT, United Kingdom, +441612954286, +441612955575
Chester A. Faunce
Affiliation:
c.a.faunce@salford.ac.uk, The University of Salford, Joule Physics Laboratory, Materials Research Institute, The Crescent, Salford, M5 4WT, United Kingdom
Get access

Abstract

Dilute electrostatically–Vstabilized aqueous solutions of hexa-acylated (C14) lipid A-diphosphate from Escherichia coli were prepared with low polydispersities in shape, size and charge. A high degree of ordering was exhibited for volume fractions between Φ ≅ 1.5 × 10−4 and 3.5 × 10−4. The structure factor S(Q) was strongly dependent on the particle number density, the nature of ions, e.g. Ca2+, Mg2+, K+, Na+ and H+, the effective colloidal charge (Z*), and the Debye screening length, k. The magnitude and position of the S(Q) peaks vary not only with counterions, e.g. Ca2+ or Mg2+, and concentration (nM to μM), but also with the order of their addition to the lipid A-dispersions. Different types of colloidal-crystal structures were obtained for Φ ≅ 3.5 × 10−4. The Ca2+ and K+ salts exhibited FCC type-lattices with a = 56.3 nm and 55.9 nm, whereas the Na+ and Mg2+ salts of lipid A-diphosphate formed BCC type-lattices with a = 41.5 nm and 45.5 nm, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Paradies, H. H., Quitschau, P., Zimmermann, K., Thies, M., Rusch, V., Neutron Scattering and Modeling, Workshop (The Neutron Scattering Society, U.K.), The University of Salford, Institute of Physics, L6., 19.4 -21.4 (2000).Google Scholar
2. a.) Paradies, H. H., Quitschau, P., Zimmermann, K., Thies, M., Rusch, V., Amer. Chem. Soc., national Meeting, Section Colloid & Surface Science, Abstract # 215, Washington D.C., (2000). b.) C. A. Faunce, H. Reichelt, P. Quitschau, K. Zimmermann, V. Rusch, M. Thies, and H. H. Paradies, A Century after Einstein, Institute of Physics, London, University of Warwick, UK, April 10 – 14, 2005.Google Scholar
3. Philipse, A. P. and Vrij, A., J. Chem. Phys., 88, 6459 (1988).Google Scholar
4. Sirota, E. B., On-Yang, H. D., Sinha, S. K., Chakin, P. M., Phys. Rev. Lett., 62, 1524 (1989); D. Z. Zon, L. Q. Sun, J. J. Aklonis, R. Salovey, J. Polm. Sci, A 30, 1463 (1992).Google Scholar
5. Raetz, R., and Whitfield, C., Annu. Rev. Biochem., 71, 635 (2002.Google Scholar
6. Christ, W. J., Hawkins, L. D., Lewis, M. D., Kishi, Y., in “Carbohydrate-based Drug Discovery”, Vol.1, pp 341355; Ed. C.-H., Wong, Wiley-VCH Verlag GmbH & Co, KGA, (2003).Google Scholar
7. Note: The release of endotoxin is intimately associated with septic shock. This problem caused more than 21,000 mortalities in 1996 in the US alone. (Centre for Disease Control), Atlanta, Morb. Mort. Wkkly. Rep. 46. 941-944 (1997).Google Scholar
8. a.) Hayashida, O., Kato, M., Akaiyi, K., Aoyama, Y., J. Am. Chem. Soc., 121, 11587 (1999); b.) C. Li., L. P. Budge, C. D. Driscoll, B. W. Willardson, G. W. Allman, P. B. Savage, J. Am. Chem.Soc., 121, 931 (1999).Google Scholar
9. Hubbard, R. D., Corner, S. R., Miller, B. L., J. Amer. Chem. Soc., 123, 5810 (2001).Google Scholar
10. Chan, S., Horner, S. R., Fauchet, P. M., Miller, B. L., J. Amer. Chem. Soc., 123, 11297 (2001).Google Scholar
11. Faunce, C. A., Quitschau, P., Thies, M., Scheidt, T, Paradies, H.H., in. “Old Herborn University Seminar” on Probiotics: Bacteria & Bacterial Fragments as Immunomodulatory Agents, Vol.15, pp. 95120 (2002), Herborn Litterae: Herborn, Germany.Google Scholar
12. Hayter, B. J., Rivera, M., McGroarby, E. J.; J. Biol. Chem., 262, 5100 (1987).Google Scholar
13. Crocker, J. C., Grier, D. G., MRS Bulletin, Vol.23, No 10, 24 (1998).Google Scholar
14. Thies, M., Quitschau, P., Zimmermann, K., Rusch, V., Faunce, C. A., Paradies, H. H., J. Chem. Phys., 116, 3471 (2002).Google Scholar
15. a.)Clancy, S. F., Tanner, D. A., Steiger, P. H., Thies, M., Paradies, H. H., J. Phys. Chem., 98, 11143 (1994); b.) H. H. Paradies, S. F. Clancy, M. Thies, J. Phys. Chem., 100, 9881 (1996).Google Scholar
16. a) Paradies, H. H., J. Phys. Chem., 84, 599 (1980) b) H. H. Paradies, Eur. J. Biochem., 118, 187 (1981).Google Scholar
17. a.) Barrat, J.-L., Hansen, J.-P., , J.-P., Basic Concepts for Simple and Complex Liquids, Cambridge University Press (2003; b.) New Approaches to Problems in Liquid State Theory-Inhomogenieties and Phase Separation in Simple, Complex and Quantum Fluids, eds. Cacamo, C., Hansen, J.-P., G. Stell, NATO Science Series C: Mathematical and Physical Sciences, Vol.529, (1999), Kluwer Academic Publishers.Google Scholar
18. Faunce, C. A., Paradies, H. H., Quitschau, P., J. Phys. Chem.B., 107, 2214 (2003).Google Scholar
19. D?Guanno, B., and Klein, R., Phys. Rev.A, 46, 7652 (1992).Google Scholar
20. Alexander, S., Chaikin, P. M., Grant, P., Morales, G. J., Pincus, P., J. Chem. Phys., 80, 5776 (1984).Google Scholar
21. Rogers, F. J. and Young, D. A., , D. A., Phys. Rev, A 30, 999 (1984).Google Scholar
22. Verwey, E. J. W., and Overbeck, J. Th. G., Theory of the Stability of Hydrophobic Colloids, (Elsevier, New York) (1948).Google Scholar
23. Faunce, C. A., Reichelt, H., Paradies, H. H., Quitschau, P., Zimmermann, K., J. Chem. Phys., 122, 2147271–1, (2005).Google Scholar
24. Ernst, R. K., Yi, E. C., Guo, L., Lim, K. B., Burns, J. L., Hacket, M, Miller, S. I., Science, 286, 1561 (1996).Google Scholar
25. Verlet, L. and Hansen, J.-P., Phys. Rev., 184, 151 (1969).Google Scholar
26. Faunce, C. A., Reichelt, H., Paradies, H. H., Zimmermann, K., Rusch, V., J. Phys. Chem.B., 107, 9943 (2003).Google Scholar
27. Gisler, T., Schultz, F., Barkovec, M., Sticker, H., Schurtenberger, P., D?Aguanno, B. G., Klein, R., J. Chem. Phys., 101(1), 9924 (1994).Google Scholar
28. Chang, J., Lesieur, P., Delsanti, M., Belloni, L., Bonnet-Gonnet, C., Cabane, B., J., Phys. Chem., 99, 15993 (1995).Google Scholar
29. a.) Prud'homme, R., Wu, G., and Schneider, D., Langmuir, 12, 4651 (1996); b.) M. Malmsten, and B. Lindman, Macromolecules, 25, 5440 (1992); c.) M. Malmsten, and B. Lindman, Macromolecules, 25, 5446 (1992).Google Scholar