Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T10:09:23.620Z Has data issue: false hasContentIssue false

Deposition and Characterization of Ultrathin Ta2O5 Layers Deposited on Silicon From a Ta(OC2H5)5 Precursor

Published online by Cambridge University Press:  10 February 2011

C. Chaneliere
Affiliation:
Tokyo Electron Limited, TBS Broadcast Center, 3-6 Akasaka 5-chrome, Minato-ku, Tokyo 107-8481, Japan
J.L. Autran
Affiliation:
Laboratoire de Physique de la Matière (LPM), UMR CNRS 5511, Institut National des Sciences Appliquées de Lyon, 20 avenue Albert Einstein, F-69621 Villeurbanne Cedex, France, chanelie@insa.insa-lyon.fr
J.P. Reynard
Affiliation:
ST Microelectronics, 850 rue Jean Monnet, BP 16, F-38926 Crolles Cedex, France
J. Michailos
Affiliation:
ST Microelectronics, 850 rue Jean Monnet, BP 16, F-38926 Crolles Cedex, France
K. Barla
Affiliation:
ST Microelectronics, 850 rue Jean Monnet, BP 16, F-38926 Crolles Cedex, France
H. Ushikawa
Affiliation:
Tokyo Electron Limited, TBS Broadcast Center, 3-6 Akasaka 5-chrome, Minato-ku, Tokyo 107-8481, Japan
A. Hiroe
Affiliation:
Tokyo Electron Yamanashi Limited, 650 Mitsuzawa, Hosaka-cho, Nirasaki City, Yamanashi 407-0192, Japan
K. Shimomura
Affiliation:
Tokyo Electron Yamanashi Limited, 650 Mitsuzawa, Hosaka-cho, Nirasaki City, Yamanashi 407-0192, Japan
A. Kakimoto
Affiliation:
Tokyo Electron Yamanashi Limited, 650 Mitsuzawa, Hosaka-cho, Nirasaki City, Yamanashi 407-0192, Japan
Get access

Abstract

Ultra-thin tantalum pentoxide (Ta2O5) layers of thicknesses ranging from 6 to 10 nm were deposited by low pressure chemical vapor deposition from Ta(OC2 H5)5 on rapid thermal nitrided silicon substrates. Films were annealed in UV-O3 at 450°C, in dry O2 at 750°C or by using a combination of these two treatments. The physico-chemical properties were studied by TEM and SIMS. Results showed an oxidation of the interfacial region during annealing. The C and H contaminants are reduced during the O2 post-deposition treatment, and this step may also lead to a modification of the chemical state of C in Ta2O5. Both capacitance-voltage and current-voltage measurements were performed on Al/Ta2O5/Si structures. Excellent electrical properties were recorded: high dielectric constant (between 14.8 and 19 in the case of the double step annealing, which corresponds to an equivalent SiO2 thickness ranging from 2.0 to 2.3 nm), low leakage current densities (close to 5×10−9 A.cm−2 @ 1MV.cm−1) and promising long-term reliability.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Buchanan, D.A. and Lo, S.H., Microelectron. Eng. 36, 13 (1997)Google Scholar
2.Weir, B.E., Silverman, P.J., Monroe, D., Krisch, K.S., Alam, M.A., Alers, G.B., Sorsch, T.W., Timp, G.C., Baumann, F., Liu, C.T., Ma, Y. and Hwang, D., IEDM Tech. Dig., 76 (1997)Google Scholar
3.Chaneliere, C., Autran, J.L., Devine, R.A.B. and Balland, B., Mater. Sci. Eng. R22, 269 (1998)Google Scholar
4.Byoung, H.L., Yongjoo, J., Zawadzki, K., Wen, J.Q. and Lee, J., Appl. Phys. Lett. 74, 3143 (1999)Google Scholar
5.Fukushima, N., Abe, K., Izuka, M., Schimizu, T. and Kawakubo, T., IEDM Tech. Dig., 257 (1997)Google Scholar
6.Kingon, A.I. and Streiffer, S.K., Solid State Mater. Sci. 4, 39 (1999)Google Scholar
7.Yamamichi, S., Yamamichi, A., Park, D., King, T.J. and Hu, G., IEEE Trans. Electron Devices ED–46, 342 (1999)Google Scholar
8.Chaneliere, C., Four, S., Autran, J.L. and Devine, R.A.B., Electrochem. Solid-State Lett. 2, 291 (1999)Google Scholar
9.Lin, J., Masaaki, N., Tsukune, A. and Yamada, M., Appl. Phys. Lett. 74, 2370 (1999)Google Scholar
10.Kwon, K.W., Kang, C.S., Park, S.O., Kang, H.K. and Ahn, S.T., IEEE Trans. Electron Devices ED–43, 919 (1996)Google Scholar
11.Asano, I., Kunimoto, M., Yamamoto, S., Furukawa, R., Sugarawa, Y., Uemura, T., Kuroda, J., Kanai, M., Nakata, M., Tamaru, T., Nakamura, Y., Kawagoe, T., Yamada, S., Kawakita, K., Kawamura, H., Nakamura, M., Morino, M., Kisu, T., Iijima, S., Ohji, Y., Sekiguchi, T. and Tadaki, Y., IEDM Tech. Dig., 755 (1998)Google Scholar
12.Autran, J.L., Devine, R.A.B., Chaneliere, C. and Balland, B., IEEE Electron Device Lett. EDL–18, 447 (1997)Google Scholar
13.Park, D., King, Y.C., Lu, Q., King, T.J., Hu, C., Kalnitsky, A., Tay, S.P. and Cheng, C.C., IEEE Electron Device Lett. EDL–19, 441 (1998)Google Scholar
14.Shinriki, H. and Nakata, M., IEEE Trans. Electron Devices EDL–38, 455 (1991)Google Scholar
15.Kamiyama, S., Lesaicherre, P.Y., Suzuki, H., Sakai, A., Nishiyama, I. and Ishitani, A., J. Electrochem. Soc. 140, 1617(1993)Google Scholar
16.Chaneliere, C., Four, S., Autran, J.L., Devine, R.A.B. and Sandler, N.P., J. Appl. Phys. 83, 4823 (1998)Google Scholar
17.Shi, Y., Wang, X. and Ma, T.P., IEEE Trans. Electron Devices ED–46, 362 (1999)Google Scholar
18.Wilk, G.D. and Brar, D., IEEE Electron Device Lett. EDL–20, 132 (1999)Google Scholar