Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T02:53:58.874Z Has data issue: false hasContentIssue false

Deposition Of Nanotubes and Nanotube Composites Using Matrix-Assisted Pulsed Laser Evaporation

Published online by Cambridge University Press:  10 February 2011

P. K. Wu
Affiliation:
Southern Oregon University, Ashland, OR.
J. Fitz-Gerald
Affiliation:
Naval Research Laboratory, Code 6370, Washington D.C. 20375
A. Pique
Affiliation:
Naval Research Laboratory, Code 6370, Washington D.C. 20375
D.B. Chrisey
Affiliation:
Naval Research Laboratory, Code 6370, Washington D.C. 20375
R.A. McGill
Affiliation:
Naval Research Laboratory, Code 6370, Washington D.C. 20375
Get access

Abstract

Using the Matrix-Assisted Pulsed Laser Evaporation (MAPLE) process developed at the Naval Research Laboratory, carbon nanotubes and carbon nanotube composite thin films have been successfully fabricated. This process involves dissolving or suspending the film material in a volatile solvent, freezing the mixture to create a solid target, and using a low fluence pulsed laser to evaporate the target for deposition inside a vacuum system. The collective action of the evaporating solvent desorbs the polymer/nanotube composite from the target. The volatile solvent is then pumped away leaving the film material on the substrate. By using this technique singlewall- nanotubes (SWN) have been transferred from the target to the substrate. The SWN sustain no observable damage during the deposition process. Using SWN in combination with polymers as the target material, SWN/polystyrene and SWN/polyethylene glycol composite films were made. These films can be deposited on a variety of substrates, e.g., Si, glass, plastic, and metal, using the same target and deposition conditions. SEM micrographs show that the SWN were uniformly distributed in the film. Using a simple contact mask, SWN composite films 20 um diameter patterns can be produced.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Iijima, S., Nature 354, 56 (1991).Google Scholar
2 Ebbesen, T.W. and Ajayan, P.M., Nature 350, 220 (1992).Google Scholar
3 Ebbesen, T.W., Annu. Rev. Mater. Sci., 24, 235 (1994).Google Scholar
4 Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Colbert, D.T., Scuseria, G., Tománek, D., Fischer, J.E., and Smalley, R.E., Science, 273, 483 (1996).Google Scholar
5 Saito, R., Fujita, M. S, Dresselhaus, G., and Dresselhaus, M.S., Appl. Phys. Lett., 60, 2204 (1992).Google Scholar
6 Ebbesen, T.W., Lezec, H.J., Hiura, H., Bennet, J.W., Ghaemi, H.F., and Thio, T., Nature, 382, 54 (1996).Google Scholar
7 Banhart, F. and Ajayan, P.M., Nature, 382, 433 (1996).Google Scholar
8 Treacy, M.M.J., Ebbesen, J.W., and Gibson, J.M., Nature, 381, 678 (1996).Google Scholar
9 Iijima, S., Brabec, C.J., Maiti, A., and Bernholc, J., Nature, 104, 2089 (1996).Google Scholar
10 McGill, R.A., Chrisey, D.B., Piqué, A., and Mlsna, T.E., Mat. Res. Soc. Symp. Proc., 526, 375 (1998).Google Scholar
11 Piqué, A., Chrisey, D.B., Spargo, B.J., Bucaro, M.A., Vachet, R.W., Callahan, J.H., McGill, R.A., Leonhardt, D., and Mlsna, T.E., Mat. Res. Soc. Symp. Proc., 526, 375 (1998).Google Scholar
12 Piqué, A., McGill, R.A., Chrisey, D.B., Leonhardt, D., Mlsna, T.E., Spargo, B.J., Callahan, J.H., Vachet, R.W., Chang, R., and Bucaro, M.A., Thin Solid Films, 355–356, 536 Google Scholar