Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-15T00:10:14.272Z Has data issue: false hasContentIssue false

Design, Fabrication and Testing of a Novel Gas Sensor utilizing Vertically Aligned Zinc Oxide Nanowire Arrays

Published online by Cambridge University Press:  01 February 2011

Prahalad Parthangal
Affiliation:
prahalad@nist.gov, University of Maryland, Mechanical Engineering, 2121 Glenn L. Martin Hall, College Park, MD, 20742, United States, 301-975-5215, 301-975-8288
Richard Cavicchi
Affiliation:
rcavicchi@nist.gov, NIST, Process Measurements Division, Gaithersburg, MD, 20899, United States
Michael Zachariah
Affiliation:
mrz@umd.edu, University of Maryland, Mechanical Engineering and Chemistry, College Park, MD, 20742, United States
Get access

Abstract

We report on a novel, non-destructive, in-situ approach toward connecting and electrically contacting vertically aligned zinc oxide nanowire arrays using conductive gold nanoparticles. A chemical gas-sensing device was constructed and tested using this nano-architecture. Well-aligned, single-crystalline zinc oxide nanowires were grown through a direct thermal evaporation process at 550 °C on gold catalyst layers. Electrical contact to the top of the NW array was established by creating a contiguous nanoparticle film through electrostatic attachment of conductive gold nanoparticles exclusively onto the tips of nanowires. The gas-sensing device fabricated through this approach was found to be sensitive to both reducing (methanol) and oxidizing (nitrous oxides) gases. This assembly approach is amenable to any array of one-dimensional nanostructures for which a top contact electrode is needed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kim, H.-M., Cho, Y.-H., Lee, H., Kim, S.I., Ryu, S.R., Kim, D.Y., Kang, T.W. and Chung, K.S., Nano Lett. 4, 1059 (2004).Google Scholar
2. Könenkamp, R., Word, R.C. and Godinez, M., Nano Lett. 5, 2005 (2005).Google Scholar
3. Wan, Q., Li, Q.H., Chen, Y.J., Wang, T.H., He, X.L., Li, J.P. and Lin, C.L., Appl. Phys. Lett. 84, 3654 (2004).Google Scholar
4. Kolmakov, A., Zhang, Y., Cheng, G. and Moskovits, M., Adv. Mater. 15, 997 (2003).Google Scholar
5. Wang, C., Chu, X. and Wu, M., Sens. Actuators B 113, 320 (2006).Google Scholar
6. Ponzoni, A., Comini, E., Sberveglieri, G., Zhou, J., Deng, S.Z., Xu, N.S., Ding, Y. and Wang, Z.L., Appl. Phys. Lett. 88, 203101 (2006).Google Scholar
7. Kind, H., Yan, H., Messer, B., Law, M. and Yang, P., Adv. Mater. 14, 158 (2002).Google Scholar
8. Goldberger, J., Sirbuly, D.J., Law, M. and Yang, P., J. Phys. Chem. B 109, 9 (2005).Google Scholar
9. Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R. and Yang, P., Science 292, 1897 (2001).Google Scholar
10. Wagner, R.C. and Ellis, W.C., Appl. Phys. Lett. 4, 89 (1964).Google Scholar
11. Geng, C., Jiang, Y., Yao, Y., Meng, X., Zapien, J.A., Lee, C.S., Lifshtiz, Y. and Lee, S.T., Adv. Funct. Mater. 14, 589 (2004).Google Scholar
12. Mitra, P., Chatterjee, A.P. and Maiti, H.S., Mater. Lett. 35, 33 (1998).Google Scholar
13. Liu, Y., Dong, J., Hesketh, P.J. and Liu, M. J. Mater. Chem. 15, 2316 (2005).Google Scholar
14. Ryu, H.-W., Park, B.-S., Akbar, S.A., Lee, W.-S., Hong, K.-J., Seo, Y.-J., Shin, D.-C., Park, J.-S. and Choi, G.-P., Sens. Actuators B 96, 717 (2003).Google Scholar
15. Jeong, M.-C., Oh, B.-Y., Nam, O.-H., Kim, T. and Myoung, J.-M., Nanotechnology 17, 526 (2006).Google Scholar
16. Koshizaki, N. and Oyama, T., Sens. Actuators B 66, 119 (2000).Google Scholar