No CrossRef data available.
Published online by Cambridge University Press: 21 February 2011
In composite materials for electro-mechanical applications, the importance of the mode in which the constituent phases are interconnected (connectivity) was stressed. For the tensor properties of mechanical, piezoelectric, and dielectric behavior, controlling the manner in which fields and fluxes thread through the composite can make orders of magnitude change in the coupled properties.
Examples were drawn from piezoelectric ceramic:polymer composites for uniaxial and hydrostatic (hydrophone) pressure sensing where the 1:3 connected transversely reinforced composite can be shown to exhibit a figure of merit more than 103 that of the piezoceramic phase alone. In these systems, the importance of poisson ratio effects in the polymer phase were evident, and some new composite systems where the hydrostatic stiffness of the elastomer phases may be better exploited were considered.
In electro-thermal applications such as in pyroelectric composites, the requirements of small-size and low-thermal mass put rigorous limits upon the scale of the composite microstructure. Techniques which achieve the appropriate scaling were described and preliminary data showed strong enhancement of the secondary effects in these composites were presented.